
now that we know what are the x-values, what are the y-values? well, we can just use the 2nd equation, since we know that y = x - 28, then
![\bf y = x - 28\implies \stackrel{\textit{when x = 16}}{y = 16 - 28}\implies y = -12 \\\\\\ y = x - 28\implies \stackrel{\textit{when x = 12}}{y = 12 - 28}\implies y = -16 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (\stackrel{x}{16}~~,~~\stackrel{y}{-12})\qquad,\qquad (\stackrel{x}{12}~~,~~\stackrel{y}{-16})~\hfill](https://tex.z-dn.net/?f=%5Cbf%20y%20%3D%20x%20-%2028%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bwhen%20x%20%3D%2016%7D%7D%7By%20%3D%2016%20-%2028%7D%5Cimplies%20y%20%3D%20-12%20%5C%5C%5C%5C%5C%5C%20y%20%3D%20x%20-%2028%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bwhen%20x%20%3D%2012%7D%7D%7By%20%3D%2012%20-%2028%7D%5Cimplies%20y%20%3D%20-16%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%28%5Cstackrel%7Bx%7D%7B16%7D~~%2C~~%5Cstackrel%7By%7D%7B-12%7D%29%5Cqquad%2C%5Cqquad%20%28%5Cstackrel%7Bx%7D%7B12%7D~~%2C~~%5Cstackrel%7By%7D%7B-16%7D%29~%5Chfill)
Answer
simplified is log5 (2)
the 5 is suposed to be the subscript one.
I think it’s C but I am not sure sorry dude
Answer:
1/2 x^2 + 2x - 6 = 0
(1/2 x - 1)(x + 6) = 0
zeroes are 2 and -6
so the graph intersects x axis at -6 and 2
The only one to do that is diagram A
Step-by-step explanation:
If
is the cumulative distribution function for
, then

Then the probability density function for
is
:

The
th moment of
is
![E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20y%5Enf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bn-1%7De%5E%7B-%5Cfrac12%28%5Cln%20y%29%5E2%7D%5C%2C%5Cmathrm%20dy)
Let
, so that
and
:
![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu%7De%5E%7B-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du)
Complete the square in the exponent:

![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B%5Cfrac12%28n%5E2-%28u-n%29%5E2%29%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac%7Be%5E%7B%5Cfrac12n%5E2%7D%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du)
But
is exactly the PDF of a normal distribution with mean
and variance 1; in other words, the 0th moment of a random variable
:
![E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1](https://tex.z-dn.net/?f=E%5BU%5E0%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du%3D1)
so we end up with
![E[Y^n]=e^{\frac12n^2}](https://tex.z-dn.net/?f=E%5BY%5En%5D%3De%5E%7B%5Cfrac12n%5E2%7D)