Answer:
IV
Explanation:
The complete question is shown in the image attached.
Let us call to mind the fact that the SN1 mechanism involves the formation of carbocation in the rate determining step. The order of stability of cabocations is; tertiary > secondary > primary > methyl.
Hence, a tertiary alkyl halide is more likely to undergo nucleophilic substitution reaction by SN1 mechanism since it forms a more stable cabocation in the rate determining step.
Structure IV is a tertiary alkyl halide, hence it is more likely to undergo nucleophilic substitution reaction by SN1 mechanism.
Answer: I think the answer is C. NaCl and H2O
Explanation: I’m not sure tho
Answer:
Distillable mixtures may contain a solid in a liquid. This method takes advantage of the boiling point of the substances.
In this way, for the distillation to take place correctly, the mixture must be boiled until the boiling point of the solvent is reached, which will then become steam and can be led to a cooled container, in which it will condense and recover its liquidity. On the other hand the solute will remain in the container without alterations; having in both cases pure substances, free of the initial mixture.
Answer:
Increase pressure 3X => increase Temperature 3X
Explanation:
Gay-Lussac Law => T ∝ P => T =kP => Empirical Relationship => T₁/P₁ = T₂/P₂
=> T₂ = T₁P₂/P₁
Given P₂ = 3P₁ => T₂ = T₁(3P₁)/P₁ = 3T₁
Answer:
V₂ = 2.91 L
Explanation:
Given data:
Initial volume = 3.50 L
Initial temperature = 90.0°C (90+273 = 363 K)
Final temperature = 30.0 °C ( 30 +273 = 303 K)
Final volume = ?
Solution:
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
V₁/T₁ = V₂/T₂
3.50 L / 363 K) = V₂ / 303 K)
V₂ = 0.0096 L/K × 303 K
V₂ = 2.91 L