Answer:In determining the energy of activation, why was it prudent to run the slowest trial done at room temperature in the hot water bath and the fastest trial done at room temperature in the cold water bath?
Explanation:
Answer:
<span>As the temperature of a liquid solvent increases, the amount of solute that can dissolve in it <u>increases</u>.
Explanation:
The solubility of most solutes in a solvent increases with increase in temperature. This solubility is closely related to the heat of solution, (the heat evolved or absorbed when solute is dissolved in solvent). Hence, majority of solutes when dissolved in solvent absorbs heat and makes the overall heat of solution positive. Hence, in this case more heat provided will increase the rate of solubility.</span>
Answer: The average kinetic energy is proportional to the absolute temperature of the gas. Gas particles are in random motion. Gas particles have no volume. And the collisions between gas particles are elastic.
Explanation: I heard this question before, I think. Hope this helps!
The answer is 53.8 kJ.
Solution:There are two major steps in converting ice to liquid water. It begins with a phase change when ice melts at 0.0°C, and then a temperature change when the liquid water rises in temperature from zero to 32°C.
The amount of heat involved with the phase change melting is given by
q = (mass of water) (ΔHfus)
= (115.0 g)(334 J/g)
= 38410 J = 38.41 kJ
The amount of heat involved with temperature change is
q = mcΔT
= (115.0g)(4.184J/g°C)(32°C - 0.0°C)
= 15397.12 J = 15.39712 kJ
Summing up the two values gives the total heat required to convert ice to liquid water:
q = 38.41 kJ + 15.39712 kJ= 53.8 kJ
Im pretty sure the independent variable is the distance