Answer:
(c) 115.2 ft³
Step-by-step explanation:
The volume of a composite figure can be found by decomposing it into figures whose volumes are easy to compute. Here, the figure can be nicely represented as a cube and a square pyramid.
__
<h3>Cube</h3>
The volume of the cube on the left is given by ...
V = s³
V = (4.2 ft)³ = 74.088 ft³
__
<h3>Pyramid</h3>
The volume of the pyramid on the right is given by ...
V = 1/3Bh . . . . . where B is the area of the square base
V = 1/3(s²)h = (4.2 ft)²(7 ft) = 41.16 ft³
__
<h3>Total</h3>
The volume of the composite figure is the sum of these volumes:
cube volume + pyramid volume = 74.088 ft³ +41.16 ft³ = 115.248 ft³
The volume of the composite figure is about 115.2 ft³.
<span>D) Angle Bisector => incenter </span>
Answer: y = -3x - 6
Step-by-step explanation:
One way to write a <u>linear equation</u> is with slope-intercept form. Slope-intercept form is y = mx + b, where m is the slope, and b is the y-intercept.
Thus, the equation is y = -3x - 6
Hope it helps :) and let me know if you are confused anywhere.
Answer:
1. Intersecting
2. Perpendicular
3. Perpendicular
4. Perpendicular
5. Parallel
Hey!
----------------------------------------------------------------
We Know:
m∠AED = 34°
m∠EAD = 112°
----------------------------------------------------------------
Solution:
You notice 4 small triangles in both triangles. That shows that both triangles are the same.
The angles are the same for m∠BDC and m∠AED.
The angles are the same for m∠ADB and m∠EAD
----------------------------------------------------------------
Angles:
m∠BDC = 34°
m∠ADB = 112°
----------------------------------------------------------------
Congruent Angles:
m∠AED ≡ m∠BDC
m∠EAD ≡ m∠ADB
----------------------------------------------------------------
Hope This Helped! Good Luck!