Answer:
The expected value for a student to spend on lunch each day = $5.18
Step-by-step explanation:
Given the data:
Number of students______$ spent
2 students______________$10
1 student________________$8
12 students______________$6
23 students______________$5
8 students_______________$4
4 students_______________$3
Sample size, n = 50.
Let's first find the value on each amount spent with the formula:
Therefore,
For $10:
For $8:
l
For $6:
For $5:
For $4:
For $3:
To find the expected value a student spends on lunch each day, let's add all the values together.
Expected value =
$0.4 + $0.16 + 1.44 +$2.3 + $0.64 + $0.24
= $5.18
Therefore, the expected value for a student to spend on lunch each day is $5.18
Answer: 0.2
Step-by-step explanation:
Given: The commuting time on a particular train is uniformly distributed over the interval (42,52).
∴ The probability density function of X will be :-
Thus, the required probability :-

Hence, the probability that the commuting time will be less than 44 minutes= 0.2
We need to find LCM of the denominators
It is found to be 24
We get the fractions (4+9)/24= 13/24
If you're simplifying the expression, your answer would be 12r - 54s + 18t.
Answer:

Step-by-step explanation:
