Ok here is what I think.
Let us first number these statements, as #1, and #2.
First statement: 3x + 8y = 12 (1)
Second Statement: 2x + 2y = 3 (2)
Now, we can work from this.
We want to make one of the equations be equal to 0 so that at the end when we check they can be equal to each other.
Let us use 4.
3x+8y=12 1-8x-8y=-12 2
This gives us:-5x = 0
Now we should try and isolate x so we can substitute it into one of the equations.
We have -5x=0
and x=0
3(0)+8y=12
8y=12
y=12/8
y=3/2
Plug in these new equations
y=3/2 and y=0 into any of the first equations
3x+8y=12 3(0)+8(3/2)= 12 8(3/2)=12 4(3)=12 12=12
Now we know it works, thats our check^^
Answer:
0
Step-by-step explanation:
2 + 2 = 4 and then 4 - 4 = 0
Answer:
see explanation
Step-by-step explanation:
In 13 - 17
Consider the factors of the constant term which sum to give the coefficient of the x- term
13
x² - x - 42 = (x - 7)(x + 6)
15
x² + x - 6 = (x + 3)(x - 2)
17
x² - 27x + 50 = (x - 25)(x - 2)
19
r² - 25 ← is a difference of squares and factors in general as
a² - b² = (a - b)(a + b) , thus
r² - 25
= r² - 5² = (r - 5)(r + 5)
Step-by-step explanation:
the process is shown in the picture.