899
900
- 382
<h3> 517</h3><h3>Hope this helps</h3>
Answer:
Step-by-step explanation:
when you draw a line through both it show that the are parallel and will never touch.
A:
(f+g)(x)=f(x)+g(x)
(f+g)(x)=4x-5+3x+9
(f+g)(x)=7x+4
B:
(f•g)(x)=f(x)•g(x)
(f•g)(x)=(4x-5)(3x+9)
(f•g)(x)=12x^2-15x+36x-45
(f•g)(x)=12x^2+21x-45
C:
(f○g)(x)=f(g(x))
(f○g)(x)=4(3x+9)-5
(f○g)(x)=12x+36-5
(f○g)(x)=12x+31
Answer:
A) C(d,m) = 40 + 55d + 0.13m
B) $448
Step-by-step explanation:
Let 'd' be the number of days and 'm' the number of miles driven.
A) The cost function that describes a fixed amount of $40, added to a variable amount of $55 per day (55d) and a variable amount of 13 cents per mile (0.13m) is:

B) If d = 5 and m =600, the total cost is:

The cost is $448.
Answer:
8a^3.
Step-by-step explanation:
(a+b)^3=a^3+b^3+3a^2b+3ab^2
(a-b)^3=a^3-b^3-3a^2b+3ab^2
(a+b)^3+(a-b)^3=2a^3+6ab^2
According to the question
(a+b)^3+(a-b)^3+6a(a^2-b^2)
Put in the value
=2a^3+6ab^2 +6a^3–6ab^2
=8a^3