So if you put a holo ball of paper in the water it sinks and as it sinks it gets smaller cuse pressure so it cuseus things to shrink cuse of pressure
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy.
hope this helps you! :-)
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
Concentration = 2.14 âś• 10-2 m
For [Br-], there are 2 ions so 2 x 2.14 x 10^-2 =4.28 x 10^-2
Ksp = [Pb][Br]^2 = 2.14 âś• 10-2 x (4.28 x 10^-2 )^2 = 39.20 x 10^-6
Ksp = 3.92 x 10^-5
It can take 49 days, I could be wrong. What do you mean in this question?