<span>Niels Henrik David Bohr is the scientist credited with developing the orbital model of the atom. He was Danish physicist who made foundational contributions to understanding atomic structure and quantum theory. He received the Nobel Prize in Physics in 1922</span>
Answer:
1. 2.04 W/m²
2. 1.63°C
Explanation:
The radiative force that the Earth receives comes from the Sun. When the Sun rays come to the surface, some of them are absorbed and then it is reflected in the space. The greenhouse gases (like CO2) blocks some of these rays, and then the surface stays warm. The excessive amount of these gases makes the surface warmer, which unbalance the climate on Earth.
1. The variation of the radiative forcing can be calculated based on the concentration of the CO2 by the equation:
ΔF = 5.35*ln(C/C0)
Where C is the final concentration, and C0 is the initial concentration.
ΔF = 5.35*ln(410/280)
ΔF = 2.04 W/m²
2. The temperature change in the Earth's surface caused by the variation of the radiative forcing can be calculated by:
ΔT = 0.8*ΔF
ΔT = 0.8*2.04
ΔT = 1.63 K = 1.63°C
Answer:
P and V: inversely proportional
P and T: directly proportional
V and T: inversely proportional
Explanation:
For pressure and volume, as the volume goes up, meaning the container gets bigger, the pressure would go down. There would be more room in the container, so there would be less collisions between the molecules themselves and between the molecules and the container. This makes them inversely proportional.
For pressure and temperature, as the pressure goes up, there are more collisions, so the particles move faster. Temperature is the speed of the particles, so, since both pressure and temperature would go up at the same time, they are directly proportional.
For volume and temperature, this is similar to the PV relationship. As volume increases, there are less collisions between the particles. This means that the particles are going to move slower. Therefore, as volume goes up, temperature goes down, so they are inversely proportional.
Sorry this is super long, but I hope it fully explains the question for you! ☺
Depending on what chemicals you use it slows the reaction