Answer:
Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
Explanation:
To find the coordinates of event in system K ,we have to use inverse Lorentz transformation
So

for t

Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.
Average speed = (total distance) / (total time)
Total distance = (70km + 104km + 79km) = 253 km
Total time = (2hr + 1.5hr + 2hr) = 5.5 hrs
Average speed = (253 km) / (5.5 hrs)
<em>Average speed = 46 km/hr</em>
Answer:
if you need an actual number answer you can use :Vf = Vi + at. If you throw the ball it will have an initial force beside gravity accelerating the fall temporarily from greater than throw it downwards, its acceleration (in the absence of air resistance) will be greater than 9.8 m/s2 until it slows back down to a constant 9.8 m/s2 after ( t )amount of time
Explanation:
If you drop a ball, it accelerates downward at 9.8 m/s2. if instead you throw the ball straight downwards While throwing, we apply an additional force other than the gravitational force.
This gives an additional, temporary acceleration along with the gravitational acceleration.
Thus from the instant it is thrown and the instant it leaves your hand, the object is under variable acceleration, the variation of acceleration being the reason of the varying force which we do apply on the object. But once it leaves our hand it is always under constant acceleration of g which is9.8 m/s2