1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
3 years ago
9

Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o

f equal magnitude. The distances between A and B, B and C, and C and D are equal.
a. Which charge experiences the greatest net force? Which charge experiences the smallest net force?
b. Find the ratio of the greatest to the smallest net force.

Physics
1 answer:
polet [3.4K]3 years ago
7 0

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

You might be interested in
There are many ways to lose weight, but a sustainable plan generally involves behavior modification related to diet and exercise
Anna007 [38]

The answer is adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients.

Explanation:

Despite that adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients is one of the best strategy to reducing weight, most time it is very difficult for those that want to reduce or control their weight to discipline themselves enough to follow these routine. But one an individual that want to loose weight or live a healthy lifestyle is able to follow these procedures he/she will surely loose weight.

5 0
4 years ago
Power plants can be powered by fossil fuels, such as coal or natural gas, or nuclear power to produce steam to turn turbines to
Naddika [18.5K]
<span>Nuclear energy is cleaner while generating electricity. Nuclear fission provides energy without releasing greenhouse gases such as carbon dioxide. However, nuclear power plants generate significant amounts of radioactive waste.  That is why we should not choose nuclear energy over fossil fuel power plants.</span>
7 0
3 years ago
6. Show that the weight of an object on the moon is 1/6 its weight on earth.​
mojhsa [17]

Taking ratio of W & w. ≈ 6 . w = 1/6 W. Therefore , Weight of an object on the moon is 1/6 of its weight on the earth.

5 0
3 years ago
The position of an electron is given by , with t in seconds and in meters. At t = 3.99 s, what are (a) the x-component, (b) the
egoroff_w [7]

Answer:

A. Vx = 3.63 m/s

B. Vy = -45.73 m/s

C. |V| = 45.87 m/s

D. θ = -85.46°

Explanation:

Given that position, r, is given as:

r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk

Velocity is the derivative of position, r:

V = dr/dt = 3.63 - 11.46t^j

A. x component of velocity, Vx = 3.63 m/s

B. y component of velocity, Vy = -11.46t

t = 3.99 secs,

Vy = - 11.46 * 3.99 = -45.73 m/s

C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]

|V| = √(2091.2329 + 13.1769)

|V| = √(2104.4098)

|V| = 45.87 m/s

D. Angle of the velocity relative to the x axis, θ is given as:

tanθ = Vy/Vx

tanθ = -45.73/3.63

tanθ = -12.6

θ = -85.46°

7 0
4 years ago
An 7.5 × binocular has 3.7-cm-focal-length eyepieces. What is the focal length of the objective lenses? Express your answer to t
elixir [45]

To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

\mu = \frac{f_0}{f_e}

Here,

\mu = Magnification

f_e = Focal length eyepieces

f_0 = Focal length of the Objective

Rearranging to find the focal length of the objective

f_0 = \mu f_e

Replacing with our values

f_0 = 7.5* 3.7cm

f_0 = 27.75cm

Therefore the focal length of th eobjective lenses is 27.75cm

5 0
3 years ago
Other questions:
  • In a ballistics test, a 28-g bullet pierces a sand bag that is 30 cm thick. If the initial bullet velocity was 55 m/s and it eme
    11·1 answer
  • What is the atomic mass of cu
    5·2 answers
  • 100Gw x 35ms (note: a watt is a joule per second)
    15·1 answer
  • The downlink frequency is lower than the uplink frequency. True or False
    15·2 answers
  • A student places blocks on a 100cm long see-saw as shown/
    9·1 answer
  • Convert 5g/cm^3 into kg/m^3​
    10·1 answer
  • The magnification is less than 1 what does it mean​
    7·1 answer
  • 4 Suggest four ways in which participating in physical activities can build healthy relationship? 5.Show in two ways the influeb
    12·1 answer
  • ElectroMagnetic---WaveLength Range (Meters)​
    13·1 answer
  • 1. What makes a compound a base?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!