Answer:
12 grams of the isotope carbon-12.
Explanation:
hope it helps you and give me a brainliest
Answer:
130.22 g
Explanation:
Parameters given:
Mass of water Mw = 225 g
Mass of stirrer Ms = 40 g
Mass of silver M(S) = 410 g
By applying the law of conservation of energy:
(McCc + MsCs + MwCw)ΔTw = M(S)C(S)ΔT(S)
where Mc = Mass of cup
Cc = Specific heat capacity of aluminium cup = 900 J/gC
Cs = Specific heat capacity of copper stirrer = 387 J/gC
Cw = Specific heat capacity of water = 4186 J/gC
ΔTw = change in temperature of water = 32 - 27 = 5 °C
C(S) = Specific heat capacity of silver = 234 J/gC
ΔT(S) = change in temperature of silver = 88 - 32 = 56 °C
Therefore:
[(Mc * 900) + (40 * 387) + (225 * 4186)] * 5 = 410 * 234 * 56
(900Mc + 957330) * 5 = 5276700
900Mc + 957330 = 5276700 / 5 = 1074528
900Mc = 1074528 - 957330
900Mc = 117198
Mc = 117198/ 900
Mc = 130.22 g
The mass of the cup is 130.22 g.
1 hour for the train to travel 17,000 feet
The kayaker has velocity vector
<em>v</em> = (2.50 m/s) (cos(45º) <em>i</em> + sin(45º) <em>j</em> )
<em>v</em> ≈ (1.77 m/s) (<em>i</em> + <em>j</em> )
and the current has velocity vector
<em>w</em> = (1.25 m/s) (cos(315º) <em>i</em> + sin(315º) <em>j</em> )
<em>w</em> ≈ (0.884 m/s) (<em>i</em> - <em>j</em> )
The kayaker's total velocity is the sum of these:
<em>v</em> + <em>w</em> ≈ (2.65 m/s) <em>i</em> + (0.884 m/s) <em>j</em>
That is, the kayaker has a velocity of about ||<em>v</em> + <em>w</em>|| ≈ 2.80 m/s in a direction <em>θ</em> such that
tan(<em>θ</em>) = (0.884 m/s) / (2.65 m/s) → <em>θ</em> ≈ 18.4º
or about 18.4º north of east.
Answer:
plastic isn't conductive
Explanation:
Correct me if I'm wrong but plastic isn't conductive copper is so if it's not conductive it will probably mess up the circuit or somthing