1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
3 years ago
15

What is the final velocity of a car that starts at 22 m/s and accelerates at 3.78 m/s for distance of 45 m

Physics
1 answer:
Pepsi [2]3 years ago
5 0

v^2 = v0^2 +2ad v^2 = 22^2 + 2*3.78*45 = 824.2 v= √824.2 = 28.7 m/s

You might be interested in
(a) On the axes below, sketch the graphs of the horizontal and vertical components of the sphere’s velocity as a function of tim
jeka94

Answer:

Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity

Explanation:

4 0
3 years ago
Why forces are balanced and unbalanced? need help with this the lesson is tommorow
Naya [18.7K]
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way. 

-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down.  It's just as if there's nobody sitting on it.

-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move.  The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.

-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her.  If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.

From these examples, you can see a few things:

-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.

-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.

-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
4 0
3 years ago
Read 2 more answers
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
3 years ago
A force gives a 2.0 kg mass an acceleration of 5.0 m/s2 on a level surface. What is the force applied to the mass?
Verdich [7]
So you can use the equation force = mass x acceleration to do 2 x 5 to get 10 N
8 0
3 years ago
In order for an object to have kinetic energy it must have a mass and a ?
almond37 [142]

Answer:

Velocity

Explanation:

  • The mechanical energy of the body is defined as the sum of the potential energy and kinetic energy.

                                   E = P.E + K.E

  • The potential energy of a body is due to the height from the surface of the earth.

                                  P.E = mgh

  • The kinetic energy of the is possessed by the body due to the virtue of its motion,

                                  K.E = ½ mv²

  • If there is no velocity associated with the body, there is no K.E in the body.
8 0
3 years ago
Other questions:
  • Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the fre
    7·2 answers
  • What can happen overnight to soil?
    5·1 answer
  • Physics question: show work and circle answer
    8·1 answer
  • A real object with height of 3.20 cm is placed to the left of a converging lens whose focal length is 90cm. The image is on the
    13·1 answer
  • A car travels from 20-meters to 60-meters in 10 seconds. Calculate the car's speed.
    8·1 answer
  • If the bus driver is the last one off the bus then who closes the door?
    8·2 answers
  • Mutations provide a basis for...
    10·1 answer
  • Two trains are traveling on the same track and in the same direction. The first train, which is behind the second train, blows a
    14·1 answer
  • A wooden block of mass M resting on a frictionless, horizontal surface is attached to a rigid rod of length ℓ and of negligible
    13·1 answer
  • Are moons 1-4 waxing are waning ?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!