Answer:
The answer is 9.8 N
Explanation:
As we know that the weight of an object is the amount of gravitational force acting on the object in an upward direction if the weight is acting is the downward direction.
The formula of weight:
W = Mass x Gravitational force
W = m x g
Given data:
Mass =1 kg
g = 9.8 ms-2
W = 1kg x 9.8 ms-2 = 9.8 kgms-2 ( 1 kgms-2 = N)
SO,
W = 9.8 N
The toy has an earth weight of 9.8 N.
The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Fnet = (mass) (acceleration)
= 11 kg x 3.7m/s^2
= 41 N
Answer:
53.64 m/s
Explanation:
Applying,
a = (v-u)/t............. Equation 1
Where a = acceleration of the car, v = final velocity of the car, u = initial velocity of the car, t = time.
make u the subject of the equation
u = v-at............. Equation 2
From the question,
Given: a = -12 mph/s = -5.364 m/s², t = 10 seconds, v = 0 m/s (comes to stop)
Substitute these values into equation 2
u = 0-(-5.364×10)
u = 0+53.64
u = 53.64 m/s