Answer:
the slopes of f(x)and g(x)are the same
Step-by-step explanation:
Yellow Cab : y = 0.25x + 5
Express Cab: y = 1.5x
a) Yellow Cab: 1.75 + 5 = 6.75
Express Cab: 1.5 * 7 = 10.5
YELLOW CAB
b) Yellow Cab: 0.75 + 5 = 5.75
Express Cab: 1.5 * 3 = 4.5
EXPRESS CAB
c) 0.25x + 5 = 1.5x
1.25x = 5
x = 4
4 MILES
Answer:
x = -5
Step-by-step explanation:
Since these two triangles are similar, the ratio between the corresponding lengths of each triangle will be the same.
This means the ratio between one side of each triangle (e.g. AD and DC) will be the same as the ratio between a different side of each triangle (e.g. BE and BC).
So, to create an equation for the sides which contain the unknown 'x', we must first find the ratio between the two sides by using a different set of sides.
On the right side we are given 9 for AD, and 18 for DC.
9/18 = 0.5
This means that the extra length of the larger triangle from the smaller one (AD) is half the length of the smaller triangle (DC). We can use this to make an equation for x:
If AD/DC = 0.5, then BE/EC will also = 0.5
BE = x+23
EC = x+41
Therefore:

Now we can solve by multiplying both sides by x+41 to eliminate the fraction:

Now we multiply out the brackets and move the terms to different sides:



And if we substitute the -5 into the equations:
-5+23 = 18
-5 + 41 = 36
We will see that -5 does indeed give us the same ratio between the lengths:
18/36 = 0.5
Hope this helped!
11. 1/81
12. 1/512
13. 1/81
14. 1/125
17. 1/72
18. 189/625
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.