Answer:
The fraction is 1/4
Step-by-step explanation:
we know that
The area of an equilateral triangle, using the law of sines is equal to



where
x is the length side of the triangle
In this problem
Let
b ----> the length side of the regular hexagon
2b ---> the length side of the equilateral triangle
step 1
Find the area of the six triangles
Multiply the area of one triangle by 6
![A=6[x^{2}\frac{\sqrt{3}}{4}]](https://tex.z-dn.net/?f=A%3D6%5Bx%5E%7B2%7D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B4%7D%5D)

we have

substitute

step 2
Find the area of the regular hexagon
Remember that, a regular hexagon can be divided into 6 equilateral triangles
so
The area of the regular hexagon is the same that the area of 6 equilateral triangles

we have

substitute

step 3
To find out what fraction of the total area of the six triangles is the area of the hexagon, divide the area of the hexagon by the total area of the six triangles

To solve this we are going to use the formula for compounded interest:

where

is the final amount after

years

is the initial amount

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the time in years
We know for our problem that

,

, and

. Since the interest is compounded daily, it is compounded 365 times in year; therefore,

. Lets replace those values in our formula to find

:



We can conclude the amount in Diane's after 3 years will be <span>
$1,603.31</span>
Answer:
less likely
Step-by-step explanation:
Probability is between 0 and 1 so 1 is guaranteed to happen and 0 is guaranteed to not happen
Answer:
its the last one hun
Step-by-step explanation:
(4xy-2y^2)+2y
4-2=2....x will remain y^1-y^2=y^-1
2xy^-1+2y
answer=2x+2y