Answer:
Explanation:
For the reaction
C2H5OH (l) + 3 O2(g) = 2CO2(g) + 3 H2O
We can calculate the standard molar enthalpy of combustion using the standard enthalpies of formation of the species involved in the reaction according to Hess law:
ΔHºc = 2ΔHºf CO2 (g) + 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) - 3ΔHºfO2 (g) )
( we were not give the water state but we know we are at standard conditions so it is in its liquid state )
The ΔHºfs can be found in appropiate reference or texts.
ΔHºc = 2ΔHºf CO2 (g)+ 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) -+3ΔHºfO2 (g) )
= [ 2 ( -393.52 ) + 3 ( -285.83 ) ] - [( -276.2 + 0 ) ] kJ
ΔHºc = -1368.33 kJ
<span>Atoms with greatly different electronegativity values are expected to form </span>ionic bonds
255 Newtons hope this helps
Bcz you’re able to wear something fresh, get a tan if you’d want, play volleyball or go out to swim in the cold ocean that feels so good when it’s hot !
Answer:
option D is correct
Explanation:
no of moles in 3 grams of HCL=3/36=0.08
if 1 mole of HCL require 1 mole of NaOH then 0.08 moles required 0.08 moles of NaOH
mass of 0.08 moles of NaOH=moles*molar mass=0.08*40=3.2 grams
so 3 grams are required in the reaction