Answer:
0.89 g of ethane
Explanation:
The balanced reaction equation is
C2H6(g) + 7/2 O2(g) -----------> 2CO2(g) + 3H2O(g)
From this balanced reaction
30g of ethane yields 54g of water
Therefore mass of ethane necessary to obtain 1.61g of water we have:
30 × 1.61/54 = 0.89 g of ethane
19.864 meters would be the correct answer
Answer:
yaeh
Explanation:
a)Ca(OH)
2
+CO
2
⟶CaCO
3
+H
2
O
No. of atoms:Ca−1;O−4;H−2;C−1
b)Zn+AgNO
3
⟶ZnNO
3
+Ag
No. of atoms:Zn−1;Ag−1;N−1;O−3.
If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Answer:
Answer to you need to make a 6.00 x 10-4 M KSCN solution starting with a 2.00 x 10-3 M KSCN solution. You will be making up the so. ... X 10-3 M KSCN Solution. You Will Be Making Up The Solution In A 25 ML Volumetric Flask And Using 0.5 M HNO3 As The Diluent. What Volume Of 2.00 X 10-3 M KSCN Will You Need?
Explanation: