The choices are:
<span>A. The first gas sample has a temperature of 273 K, and the second gas sample has a temperature of 0</span>°<span>C.
B. The first gas sample has a temperature of 273 K, and the second gas sample has a temperature of 298 K.
C. The first gas sample has a temperature of 273 K, and the second gas sample has a temperature of 273</span>°<span> C.
D. The first gas sample has a temperature of 273 K, and the second gas sample has a temperature of 100</span>°<span> C.
The correct answer is A because the two gases will have the same temperature and 273 K = 0</span>°C
Answer:
76.0%
Explanation:
Let's consider the following reaction.
CaCO₃(s) ⇄ CaO(s) + CO₂(g)
At equilibrium, the equilibrium constant Kp is:
Kp = 1.16 = pCO₂ ⇒ pCO₂ = 1.16 atm
We can calculate the moles of CO₂ at equilibrium using the ideal gas equation.

From the balanced equation, we know that 1 mole of CO₂ is produced by 1 mole of CaCO₃. Taking into account that the molar mass of CaCO₃ is 100.09 g/mol, the mass of CaCO₃ that reacted is:

The percentage by mass of the CaCO₃ that reacted to reach equilibrium is:

Geologists use these records to establish the structure of Earth's interior. The two principal types of seismic waves are P-waves (pressure; goes through liquid and solid) and S-waves (shear or secondary; goes only through solid - not through liquid).
Answer:
the object will float for a few seconds and most likely fall back down because it still has a little bit of gravity attached or it would float a few inches up but not too high in the air where its out of reach
Explanation: