1. Hyaline: most common; found in the ribs, nose, trachea. Is a precursor of bone
2. Fibro: found in invertebral discs, joint capsules, and ligaments.
3. Elastic: found in the external ear, epiglottis, and larynx.
Answer: C) Tetrahedral
Explanation:
The number of electron pairs is 4 that means the hybridization will be
but as there are three bonding domains and one nonbonding domain, thus electronic geometry is tetrahedral and the molecular geometry will be trigonal pyramidal.
Linear electron geometry is possible when number of electron pairs is 2 and the hybridization will be
.
Trigonal planar geometry is possible when number of electron pairs is 3 and the hybridization will be
.
Trigonal bipyramidal geometry is possible when number of electron pairs is 5 and the hybridization will be
.
Octahedral geometry is possible when number of electron pairs is 6 and the hybridization will be
.
Aromatic compound has continuous cyclic structure with( 4n+2)π electrons (Huckels rule), where n = 0,1,2…
Here number of pi electron are 6, where 4 from two double bond and 2 from nitrogen non-bonding electrons, hence it has total 6 pi electrons, therefore
6= ( 4n+2)π
4 = 4n
n =1
Hence it is an aromatic compound
The answer is 1) CF3
Because: the equivalent of Fluorine is -1 so it aims to get an electron so much. which means it's electronegative.
but the equivalent of Hydrogen is +1 so it aims to give an electron. which means it's electropositive.
please mark as brainliest answer