Answer:
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
When a substance burns we talk about a combustion reaction. When combustion is complete the products are carbon dioxide and water, like in this case. The equation is:
C₄H₁₀(l) + O₂(g) ⇄ CO₂(g) + H₂O(g)
First, we balance the element with the largest stoichiometric coefficient (C).
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + H₂O(g)
Then, we balance H because it is in just 1 compound on each side.
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Finally, we balance O.
C₄H₁₀(l) + 6.5 O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Since we want the smallest whole numbers, we multiply all coefficients by 2.
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Hey there!
The Buoyant force is going to be equal to the weight of the water displaced and it would be like this 100 L(9.8 N/L) = 980 N.
Hope this helped and mind marking me brainliest. Thank you!
Q1)
As Kemmi pipettes a volume of 25.00 ml of the solution
density of pure propanol is 0.803 g/ml
This means that in 1000 ml of solution - 0.803 g of pure propanol
Therefore in 25.00 ml of solution - 0.803 g x 25.00 ml / 1000 ml
= 0.0201 g
Using molar mass, number of moles can be calculated= 0.0201 g / 60.09 g/mol
= 3.35 x 10⁻⁴ mol
therefore the number of pure propanol moles in exactly 25.00 ml is
3.35 x 10⁻⁴ mol
Q2)
molarity is the concentration of the solution. It can be defined as the number of moles of solute per liter of solution
we know the number of moles in 25.00 ml of solution. When its diluted in a 100.00 ml volumetric flask, number of moles remain constant but now the volume over which the moles of solute are dissolved is increased.
therefore number of moles = 3.35 x 10^(-4) mol
volume over which its dissolved - 100.00 / 10³ dm³
= 1.0000 x10⁻¹ dm³
the molarity = 3.35 x 10⁻⁴ mol / 1.0000 x10⁻¹ dm³
= 3.35 x 10⁻³ mol/dm³
Answer:
2.40 × 10²³ Atoms of Hydrogen
Solution:
The number of hydrogen atoms in C₃H₈O₃ are calculated as;
As, there are eight hydrogen atoms per molecule of C₃H₈O₃, therefore the number of hydrogen atoms per mole of C₃H₈O₃ are calculated as;
1 mole C₃H₈O₃ contains = 6.022 × 10²³ Molecules of C₃H₈O₃
So,
0.05 mole C₃H₈O₃ will contain = X Molecules of C₃H₈O₃
Solving for X,
X = (0.05 × 6.022 × 10²³) ÷ 1
X = 3.011 × 10²² Molecules of C₃H₈O₃
As,
1 Molecule of C₃H₈O₃ contains = 8 Atoms of Hydrogen
So,
3.011 × 10²² Molecules of C₃H₈O₃ will contain = X Atoms of Hydrogen
Solving for X,
X = (3.011 × 10²² × 8) ÷ 1
X = 2.40 × 10²³ Atoms of Hydrogen
Answer:
the correct way to do this would be
Explanation:
2 C3H7OH + 9 O2 -> 6 CO2 + 8 H2O
6 C -> 6 C
now heres where it got tricky becasue theres two H's
H 7 * 2 + 7 H = 21 H -> 21 H
20 O -> 20 O