It would be 20ft have a great day
Answer: Hello mate!
The partition of a set is defined as a partition of the set into a nonempty subset, where the set itself is a subset of himself, then the set is a partition of himself.
a) in this we have a set of two objects; A = (1,2) the partitions of this set are: (∅), (1), (2) and (1,2). Where (∅) is the null set.
b) Now we have a set of three objects; B = (a,b,c) the partitions of this set are: (∅), (a), (b), (c), (a,b), (a,c), (b,c), (a,b,c)
Answer:
C
Step-by-step explanation:
degree 1 ( linear function
3(2)-18=-12
6-18 = -12
-12 = -12
When we are given 3 sides, we try to solve the angles first by using the
law of cosines
cos (A) = [b^2 + c^2 - a^2] / (2 * b * c)
cos (A) = [43^2 + 17^2 -27^2] / (2 * 43 * 17)
cos (A) = [1,849 + 289 -729] /
<span>
<span>
<span>
1,462
</span></span></span>cos (A) = 1,409 / 1,462
cos (A) =
<span>
<span>
<span>
0.96374829001368
Angle A = 15.475
Now that we have one angle, we next can use the
Law of Sines
sin(B) / side b = sin(A) / side a
sin(B) = sin(A) * sideb / sidea
</span></span></span><span>sin(B) = sin(15.475) * 43 / 27
</span><span>sin(B) = 0.26682 * 43 / 27
sin (B) = </span><span>0.424935555555</span>
Angle B = 25.147 Degrees
Remember the arc sine (<span>0.424935555555) also equals </span>
<span>
<span>
<span>
154.85
</span></span></span>Finally, calculating the third angle is quite easy
Angle C = 180 - Angle (A) - Angle(B)
Angle C = 180 - 15.475 - 154.85
Angle C = 9.675
Source:
http://www.1728.org/trigtut2.htm