1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
3 years ago
10

A 5.74 kg rock is thrown upwards with a force of 317 N at a location where the local gravitational acceleration is 9.81 m/s^2. W

hat is the net acceleration of the rock?
Engineering
1 answer:
Greeley [361]3 years ago
6 0

Answer:

a=45.31m/s^2

Explanation:

From the question we are told that:

Mass m=5.74

Force F=317N

Gravitational Acceleration g=9.81m/s^2

Generally the equation for Force is mathematically given by

 F-mg=ma

 317-5.74*9.81=5.74 a

 a=\frac{260.7}{5.74}

 a=45.31m/s^2

You might be interested in
Is there a way to get the answers to a NCCER book test?
sergeinik [125]

Answer:

go on google and type NCEER book answers

3 0
3 years ago
What is engine knock? What cause the engine knock problem?
antiseptic1488 [7]

Answer:

When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.

Explanation:

When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.

The engine knock problem can be caused due to the following reason

a) When the octane rating of the fuel used is low.

b) The deposition of the carbon around the cylinder walls takes place.

c) The spark plug used in the vehicle is not correct.

3 0
3 years ago
Errors in the output voltage of an actual integrated circuit operational amplifier can be caused by : Select one:
natta225 [31]

Answer:

Option B

Explanation:

An operational amplifier usually has a high open loop gain of around 10^5 which allows a wide range get of feed back levels in order to achieve the desired performance so therefore a low open loop gain reduces the range feed back level thereby reducing the performance which can cause errors in the output voltage.

7 0
3 years ago
According to the decreasing order of toughness. list the following materials (note: the steels are assumed to have no cold work
fiasKO [112]

Answer:

1090 Steel >1040 Steel > Pure aluminium >Diamond.

Explanation:

Toughness:

  Toughness can be define as the are of load -deflection diagram up to fracture point.

Modulus of toughness can be defines as the area of stress-strain diagram up to fracture point.Modulus of toughness is the property of material.

So the decreasing order of toughness can be given as follows

1090 Steel >1040 Steel > Pure aluminium >Diamond.

8 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
Other questions:
  • Explain what entropy is in relation to the second law of thermodynamics?
    9·1 answer
  • Select all that apply.
    13·1 answer
  • Question 5
    7·2 answers
  • A small wind tunnel in a university’s undergraduate fluid flow laboratory has a test section that is 20 in. by 20 in. in cross s
    8·1 answer
  • In case of damaged prestressed concrete I girders which are used for restoring strength?
    9·1 answer
  • A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is λ/30, and the loop is connect
    15·1 answer
  • What is the answer???
    10·1 answer
  • How many squares titles (20cm x 20cm) are needed to coat the sides and base of a pool which is 10m long, 6 meter wide and 3m dee
    8·1 answer
  • In the case of a collision causing property damage, injury, or death, you are required to ____
    14·2 answers
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!