1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
3 years ago
7

Is santa real or nah is santa real or nah

Engineering
2 answers:
Stolb23 [73]3 years ago
8 0
No sorry. A big bearded man with a red quilt can’t come into homes at night and deliver presents to all of the world in one night.
Elena L [17]3 years ago
3 0

Answer:

nah

Explanation:

You might be interested in
Explain with schematics the operating principle of solid state lasers.
alina1380 [7]

Explanation:

A solid state laser contains a cavity like structure fitted with spherical mirrors or plane mirrors at the end filled with a rigidly bonded crystal. It uses solid as the medium. It uses glass or crystalline materials.

    It is known that active medium used for this type of laser is a solid material. This lasers are pumped optically by means of a light source which is used as a source of energy for the laser. The solid materials gets excited by absorbing energy in the form of light from the light source. Here the pumping source is light energy.  

7 0
3 years ago
What does the word “robot” mean? A.Clone B. Athlete C. Servant D. Actor
hram777 [196]

Answer:

a. clone

Explanation:

4 0
3 years ago
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
In Illinois, once a person has obtained their boating education certificate what is the minimum age to operate a motorized vesse
bixtya [17]

Answer:

I dont really know, I am sorry, but I am going to ask my teacher

5 0
3 years ago
Read 2 more answers
Disadvantage of metal
ivolga24 [154]
You can get hurt if u don’t use it properly.
7 0
3 years ago
Other questions:
  • Due at 11:59pm please help
    14·1 answer
  • Consider a pipe with an inner radius of 5cm and an outer radius of 7cm.The inner surface is kept at 100C, and the outer surface
    11·1 answer
  • What is a business cycle? a period of economic growth followed by economic contraction the amount of time it takes a business to
    13·2 answers
  • In plumbing what is a video snake used for
    10·2 answers
  • *100 POINTS
    6·2 answers
  • Choose the correct word or phrase to complete the sentence to explain human intervention in a machine system.
    13·1 answer
  • Use the drop-down menus to complete the statements about using OneNote in Outlook meeting requests.
    15·1 answer
  • Teaching how to characterize and implement high speed power devices for tomorrow's engineers
    10·1 answer
  • 2.<br> The most common way to identify size of pipe is by:
    8·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!