1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
11

3. A 2kg wooden block whose initial speed is 3 m/s slides on a smooth floor for 2 meters before it comes to a

Physics
1 answer:
serious [3.7K]3 years ago
7 0

Answer:

Calculating Coefficient of friction is 0.229.

Force is 4.5 N that keep the block moving at a constant speed.

Explanation:

We know that speed expression is as \mathrm{V}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 . \mathrm{a} . \Delta \mathrm{s}.

Where, {V}_{i} is initial speed, V is final speed, ∆s displacement and a acceleration.

Given that,

{V}_{i} =3 m/s, V = 0 m/s, and  ∆s = 2 m

Substitute the values in the above formula,

0=3^{2}-2 \times 2 \times a

0 = 9 - 4a

4a = 9

a=2.25 \mathrm{m} / \mathrm{s}^{2}

a=2.25 \mathrm{m} / \mathrm{s}^{2} is the acceleration.

Calculating Coefficient of friction:

\mathrm{F}=\mathrm{m} \times \mathrm{a}

\mathrm{F}=\mu \times \mathrm{m} \times \mathrm{g}

Compare the above equation

\mu \times m \times g=m \times a

Cancel "m" common term in both L.H.S and R.H.S

\text { Equation becomes, } \mu \times g=a

\text { Coefficient of friction } \mu=\frac{a}{g}

\mathrm{g} \text { on earth surface }=9.8 \mathrm{m} / \mathrm{s}^{2}

\mu=\frac{2.25}{9.8}

\mu=0.229

Hence coefficient of friction is 0.229.

calculating force:

\text { We know that } \mathrm{F}=\mathrm{m} \times \mathrm{a}

\mathrm{F}=2 \times 2.25 \quad(\mathrm{m}=2 \mathrm{kg} \text { given })

F = 4.5 N

Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.

You might be interested in
A cannon is fired from the edge of a cliff, which is 60m above the sea. The cannonball's initial velocity is 88.3m/s and it is f
wel

Answer:

a. 11.29 s b. 94.72 m/s at -39.8° c. 821.57 m​

Explanation:

a. Using y - y₀ = ut - 1/2gt² where u = vertical component of velocity = v₀sinθ where v₀ = 88.3 m/s and θ = 34.5°, y₀ = + 60 m and y = water surface = 0 m, g = 9.8 m/s² and t = time it takes the cannon to reach the water surface.

So y - y₀ = ut - 1/2gt²

y - y₀ = (v₀sinθ)t - 1/2gt²

substituting the values of the variables into the equation, we have

0 - 60 = (88.3 m/s × sin34.5°)t - 1/2 × 9.8 m/s²× t²

- 60 = 50t - 4.9t²

So, 4.9t² - 50t - 60 = 0

Using the quadratic formula to find t,

t = \frac{-(-50) +/- \sqrt{(-50)^{2} - 4 X 4.9 X -60} }{2 X 4.9} \\t = \frac{50 +/- \sqrt{2500 + 1176} }{9.8} \\t = \frac{50 +/- \sqrt{3676} }{9.8} \\t = \frac{50 +/- 60.63 }{9.8} \\t = \frac{50 + 60.63 }{9.8} or t = \frac{50 - 60.63 }{9.8} \\t = \frac{110.63 }{9.8} or t = \frac{-10.63 }{9.8} \\t = 11.29 sor -1.085

Since t cannot be negative, t = 11.29 s

b. We first need to find the impact vertical velocity component. Using

v = u - gt where u = initial vertical velocity component = v₀sinθ  and t = 11.29 s and g = 9.8 m/s². So,

v = v₀sinθ - gt

= 88.3 m/s × sin34.5° - 9.8 m/s² × 11.29 s

= 50.01 m/s - 110.64 m/s

= -60.63 m/s

Since the horizontal velocity is constant u' = v₀cosθ = 88.3 m/s × cos34.5° = 72.77 m/s.

The impact velocity is thus the resultant of the horizontal velocity and final impact velocity. So, V = √(v² + u'²)

= √((-60.63 m/s)² + (72.77 m/s)²)

= √((3676 m²/s² + 5295.48 m²/s²)

= √(8971.48 m²/s²

= 94.72 m/s

The angle θ = tan⁻¹(v/u') = tan⁻¹(-60.63 m/s ÷ 72.77 m/s) = tan⁻¹(-0.8332) = -39.8°

So the impact velocity is 94.72 m/s at -39.8°

c. The horizontal distance out from the base of the cliff that the ball strikes the water is the range, R = u't = 72.77 m/s × 11.29 s = 821.57 m​

5 0
3 years ago
QUICCCKKKKK!!!!!!!!!!Stimulus discrimination occurs when an organism generalizes one consequence to many stimuli similar to the
timama [110]
False i just took the test and put true as a guess but got it wrong so it is false

please give me a brainlies
7 0
3 years ago
Read 2 more answers
Why do the passengers in high-altitude jet planes feel the sensation of weight while passengers in an orbiting space vehicle, su
kykrilka [37]

Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.

In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.

Remember that the Force of Gravity is given under the principle

F_g = \frac{GMm}{r^2}

Where,

G = Gravitational Universal constant

M = Mass of the planet

m = mass of the object

r = Distance from center of the planet

When the radius grows considerably the gravitational force begins to decrease.

7 0
3 years ago
During your summer internship for an aerospace company, you are asked to design a small research rocket. The rocket is to be lau
Luden [163]

10.8 seconds is the correct answ

3 0
3 years ago
A packing crate rests on a horizontal surface. It is acted on by three horizontal forces: 600 N to the left, 200 N to the right,
egoroff_w [7]

Answer:

The resultant force would (still) be zero.

Explanation:

Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.

In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.

By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.

When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.

However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.

6 0
4 years ago
Other questions:
  • The graph below shows the relationship between speed and time for two objects, A and B. Compare with the acceleration of object
    7·2 answers
  • An object of mass m has these three forces acting on it (there is no normal force, "no surface"). F1 = 5 N, F2 = 8 N, and F3 = 5
    7·1 answer
  • In your own words explain efficiency
    14·2 answers
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • Two like-charged particles are placed close to each other. How would the force of repulsion be affected if the charge on one of
    15·2 answers
  • What is kelvin?(scientifically plz)
    10·1 answer
  • Please help,,, question on image
    13·1 answer
  • I will mark brainiest! Please help ASAP
    11·1 answer
  • An LED operation at 850 nm center wavelength has a spectral width of 45 nm. What is the pulse spreading in ns/km
    6·1 answer
  • Match the type of boundary with it's characteristic
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!