Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m
W-APE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative APE. There must be a minus sign in front of APE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.
( The capital A’s in the words are supposed to be triangles ! I also hoped this helped ! Please mark me as brainliest !! )
False, the spinning coil of wire that moves the cone in a speaker does not produces sound.
<u>Explanation</u>:
The wire coil is an electromagnet that is fixed to speaker cone. A normal magnet attached to the back of the speaker cone.When audio is sent in the form of short bursts of electric current to the speaker cone through the wire.
A magnetic field is induced when electric current allowed to pass through the coil. This magnetic field is repelled by the other magnet. This repulsion cause the cone to move forward. In the absence of electric current in the coil, the cone moves backward.
Thus sound waves are produced due to the resulting rarefaction and compression. So it is not the spinning coil of wire but he permanent magnet that produces the sound.
Explanation:
The total resistance used to calculate the total resistance of the two parallel resistor is given by :

Taking reciprocal of the above equation.

We can also write the above equation as :

On simplification of above equation,

or

Hence, proved.
Answer : The final temperature of the mixture is 
Explanation :
First we have to calculate the mass of water.
Mass = Density × Volume
Density of water = 1.00 g/mL
Mass = 1.00 g/mL × 180 cm³ = 180 g
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of hot water (liquid) = 
= specific heat of ice (solid)= 
= mass of hot water = 180 g
= mass of ice = 20 g
= final temperature of mixture = ?
= initial temperature of hot water = 
= initial temperature of ice = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 