Answer:
The required rectangular form of the given complex polar form :
z1 = -3√2 - 3√2i
Step-by-step explanation:
![z_1=6[\cos (\frac{5\pi}{4}) + i\sin(\frac{5\pi}{4})]...........(1)\\\\Now,\cos (\frac{5\pi}{4})=\cos(\pi+\frac{\pi}{4})\\\\=-\cos(\frac{\pi}{4})\\\\=-\frac{1}{\sqrt{2}}\\\\And,\sin (\frac{5\pi}{4})=\sin(\pi+\frac{\pi}{4})\\\\=-\sin(\frac{\pi}{4})\\\\=-\frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=z_1%3D6%5B%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B4%7D%29%20%2B%20i%5Csin%28%5Cfrac%7B5%5Cpi%7D%7B4%7D%29%5D...........%281%29%5C%5C%5C%5CNow%2C%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B4%7D%29%3D%5Ccos%28%5Cpi%2B%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D-%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5C%5C%5C%5CAnd%2C%5Csin%20%28%5Cfrac%7B5%5Cpi%7D%7B4%7D%29%3D%5Csin%28%5Cpi%2B%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D-%5Csin%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
On substituting the obtained values in equation (1)
![z_1=6[\frac{-1}{\sqrt{2}}-i\cdot \frac{1}{\sqrt{2}}]\\\\\implies z_1=-3\sqrt{2}- 3\sqrt{2}\cdot i](https://tex.z-dn.net/?f=z_1%3D6%5B%5Cfrac%7B-1%7D%7B%5Csqrt%7B2%7D%7D-i%5Ccdot%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5C%5C%5C%5C%5Cimplies%20z_1%3D-3%5Csqrt%7B2%7D-%203%5Csqrt%7B2%7D%5Ccdot%20i)
Hence, the required rectangular form of the given complex polar form :
z1 = -3√2 - 3√2i
Answer:
SP is Rs 800.
Step-by-step explanation:
MP = Rs 875
Discount = Rs 75
so
SP = MP - discount
= Rs 875 - Rs 75
= Rs 800
Answer: x=−9/4
Step-by-step explanation:
Let's solve your equation step-by-step.
−2(x+14)+1=5
Step 1: Simplify both sides of the equation.
−2(x+14)+1=5(−2)(x)+(−2)(14)+1=5(Distribute)−2x+
−1
2
+1=5
(−2x)+(
−1
2
+1)=5(Combine Like Terms)
−2x+
1
2
=5
−2x+
1
2
=5
Step 2: Subtract 1/2 from both sides.
−2x+
1
2
−
1
2
=5−
1
2
−2x=
9
2
Step 3: Divide both sides by -2.
−2x
−2
=
9
2
−2
x=
−9
4
Answer:
-231.55
Step-by-step explanation:
None of them really, but C is equivalent to the Triognometric Pythagorean Theorem:



That's the Trigonometric Pythagorean Theorem
Answer: C