Total = 28
Girls. Boys.
4. 3
28/4= 7
7 x 3 = 21
ANSWER = 21
Answer:
The ordered pairs (3 , 6) , (5 , 10) show a proportional relationship ⇒ last answer
Step-by-step explanation:
* Lets explain how to sole the problem
- Proportional relationship describes a simple relation between
two variables
- In direct proportion if one variable increases, then the other variable
increases and if one variable decreases, then the other variable
decreases
- In inverse proportion if one variable increases, then the other variable
decreases and if one variable decreases, then the other variable
increases
- The ratio between the two variables is always constant
- Ex: If x and y are in direct proportion, then x = ky, where k
is constant
If x and y in inverse proportion, then x = k/y, where k is constant
* Lets solve the problem
# Last table
∵ x = 3 and y = 6
∴ x/y = 3/6 = 1/2
∵ x = 5 and y = 10
∴ x/y = 5/10 = 1/2
∵ 1/2 is constant
∵ x/y = constant
∴ x and y are proportion
* The ordered pairs (3 , 6) , (5 , 10) show a proportional relationship
75 because it’s 75 because if you mitltkruwjbd
2.00/6 = $0.33 rounded to the nearest penny, it actually is $0.333333333333 (infinite)
I hope this helped you out :)
Answer:
The value of <em>c</em> is
.
Step-by-step explanation:
The perfect square of the difference between two numbers is:

The expression provided is:

The expression is a perfect square of the difference between two numbers.
One of the number is <em>x</em> and the other is √<em>c</em>.
Use the above relation to compute the value of <em>c</em> as follows:
![x^{2}-15x+c=(x-\sqrt{c})^{2}\\\\x^{2}-15x+c=x^{2}-2\cdot x\cdot\sqrt{c}+c\\\\15x=2\cdot x\cdot\sqrt{c}\\\\15=2\cdot\sqrt{c}\\\\\sqrt{c}=\frac{15}{2}\\\\c=[\frac{15}{2}]^{2}\\\\c=\frac{225}{4}](https://tex.z-dn.net/?f=x%5E%7B2%7D-15x%2Bc%3D%28x-%5Csqrt%7Bc%7D%29%5E%7B2%7D%5C%5C%5C%5Cx%5E%7B2%7D-15x%2Bc%3Dx%5E%7B2%7D-2%5Ccdot%20x%5Ccdot%5Csqrt%7Bc%7D%2Bc%5C%5C%5C%5C15x%3D2%5Ccdot%20x%5Ccdot%5Csqrt%7Bc%7D%5C%5C%5C%5C15%3D2%5Ccdot%5Csqrt%7Bc%7D%5C%5C%5C%5C%5Csqrt%7Bc%7D%3D%5Cfrac%7B15%7D%7B2%7D%5C%5C%5C%5Cc%3D%5B%5Cfrac%7B15%7D%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5Cc%3D%5Cfrac%7B225%7D%7B4%7D)
Thus, the value of <em>c</em> is
.