Answer:
y <8 10⁻⁶ m
Explanation:
For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.
Therefore the diffraction equation for slits with m = 1 remains
a sin θ = λ
in general these experiments occur for oblique angles so
sin θ = θ
θ = λ / a
in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant
θ = 1.22 λ / a
The angles in these measurements are taken in radians, therefore
θ = s / R
as the angle is small the arc approaches the distance s = y
y / R = 1.22 λ / s
y = 1.22 λ R / a
let's calculate
y = 1.22 500 10⁻⁹ 0.42 / 0.032
y = 8 10⁻⁶ m
with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)
y <8 10⁻⁶ m
Answer:
It can be concluded that the star is moving away from the observer.
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest for this case is 434 nm and 410 nm (
,
)

Since,
(444nm) is greater than
(434 nm) and
(420nm) is greater than
(410 nm), it can be concluded that the star is moving away from the observer
Answer:
The magnification is a function of the lenses in the objective and the eyepiece, so the magnification of the two must be multiplied to obtain the total magnification possible. So, for example, if the objective lens was 4X and the eye piece lens was 10X, the total magnification would be 40. (4 x 10 = 40)
Explanation:
Answer:
yes
Explanation:
velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both