<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:

Explanation:
The spaceship has traveled 3% of the distance to a space station and it has traveled
miles.
Let the total distance from the ship's starting point to the space station be x.
This means that:

The total distance to be traveled is
.
Therefore, the distance left to travel is:

Answer:
Explanation:
Given that
Force constant k=8.6N/m
Weight =64g=64/1000=0.064kg
Extension is 45mm=45/1000= 0.045m
It will have it highest spend when the Potential energy is zero
Therefore energy in spring =change in kinetic energy
Ux=∆K.e
½ke² = ½mVf² — ½mVi²
Initial velocity is 0, Vi=0m/s
½ke² = ½mVf²
½ ×8.6 × 0.045² = ½ ×0.064 ×Vf²
0.0087075 = 0.032 Vf²
Then, Vf² = 0.0087075/0.032
Vf² = 0.2721
Vf=√0.2721
Vf= 0.522m/s
The time it will have this maximum velocity?
Using equation of motion
Vf= Vi + gr
0.522= 0+9.81t
t=0.522/9.81
t= 0.0532sec
t= 53.2 milliseconds
Answer:
The required acceleration is
m/s²
Explanation:
Given
To determine
Acceleration a = ?
We know that acceleration is produced when a force is applied to a body.
The acceleration can be determined using the formula

where
now substituting F = 250 , and m = 221 in the formula


switch the equation

Divide both sides by 221

simplify

m/s²
Therefore, the required acceleration is
m/s²