45km/h * 0.5h= 22.5km
The car can travel 22.5km in 0.5 hours
Answer:
0.79 s
Explanation:
We have to calculate the employee acceleration, in order to know the minimum time. According to Newton's second law:

The frictional force is maximum since the employee has to apply a maximum force to spend the minimum time. In y axis the employee's acceleration is zero, so the net force is zero. Recall that 
Now, we find the acceleration:

Finally, using an uniformly accelerated motion formula, we can calculate the minimum time. The employee starts at rest, thus his initial speed is zero:

Answer
a) Using dimensional analysis we cannot derive the relation, But we can check the correctness of the formula.

now, L H S
s = distance
dimension of distance = [M⁰L¹T⁰]
now, equation on the right hand side
R H S
u = speed
u = m/s
Dimension of speed = [M⁰L¹T⁻¹]
dimension of time
t = sec
Dimension of time = [M⁰L⁰T¹]
Dimension of 'ut' = [M⁰L¹T⁻¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
now, acceleration= a
a = m /s²
dimension of acceleration = [M⁰L¹T⁻²]
dimension of (at²) = [M⁰L¹T⁻²][M⁰L⁰T¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
hence, the dimension are balanced.
so, L H S = R H S
b) Moment of inertia of hollow sphere = 
Moment of inertia of solid sphere = 
we know,


Torque is the force that causes rotation
If the same amount of torque is applied to both spheres the sphere with bigger moment of inertia would have smaller angular velocity.
Thus the solid sphere would accelerate more.
Answer: below
Explanation: 1kg of steel is slightly heavier than 1 kg of feathers. 1 kg of feather will displace more air as the density of feather is very less comparitively. More the volume displaced more is the upthrust and less the apparent weight.
pulling farther back on the string
Explanation:
pulling back will increase kinetic energy