Answer:
The partial pressure of the other gases is 0.009 atm
Explanation:
Step 1: Data given
Air is about 78.0% nitrogen molecules and 21.0% oxygen molecules and 1% of other gases.
The atmospheric pressure = 0.90 atm
Step 2: Calculate mol fraction
If wehave 100 moles of air, 78 moles will be nitrogen,
21 moles will be oxygen, and 1 mol will be other gases.
Mol fraction = 1/100 = 0.01
Step 3: Calculate the partial pressure of the other gases
Pgas = Xgas * Ptotal
⇒ Pgas = the partial pressure = ?
⇒ Xgas = the mol fraction of the gas = 0.01
⇒Ptotal = the total pressure of the pressure = 0.90 atm
Pgas = 0.01 * 0.90 atm
Pgas = 0.009 atm
The partial pressure of the other gases is 0.009 atm
Answer:
2.4 hrs
Explanation:
The constant speed of the truck for 6 hrs can be calculated by: speed=distance/time. Speed =(876-228)/6=648/6=108m/s. So the decreased speed = (108-13)=95m/h. Now, speed =distance /time We get 95m/h = 228/t. t=228/95 hrs = 2.4 hrs PLEASE MARK ME THE BRAINLIEST!!
Answer:
The mass of the surrounding is 
Explanation:
From the question we are told that
The mass of
is 
The mass of water is 
The chemical equation for the dissociation process is

The specific heat capacity of the mixture is 
The combined mass of the solution is

The mass of the surround here is the mass of the coffee-cup calorimeter and this contain the mixture ( water and the NaOH ) so the mass of the surrounding is

Answer:
Oxidation–reduction or redox reactions are reactions that involve the transfer of electrons between chemical species (check out this article on redox reactions if you want a refresher!). The equations for oxidation-reduction reactions must be balanced for both mass and charge, which can make them challenging to balance by inspection alone. In this article, we’ll learn about the half-reaction method of balancing, a helpful procedure for balancing the equations of redox reactions occurring in aqueous solution.
Explanation:
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of ammonia formed
from the reaction. This is where we start our calculations.
0.575 g NH3 (1 mol NH3 / 17.03 g NH3) (3 mol
H2 / 2 mol NH3) ( 2.02 g H2 / 1 mol H2) = 0.10 g H2