Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
To determine strength of attractive forces between the molecules the size of the molecules, their polarity (dipole moment), and their shape. ... If two molecules have about the same size and similar shape, the dipole-dipole intermolecular attractive force increases with increasing polarity.
I believe the answer is a because 2 times 12 is 24. Hope this helped
Yes because molecules is solid