Answer:
B. Spring balance - a device used for measuring the weight or force of gravity acting on an object.
Explanation:
A Force is any interaction that changes the motion or position of an obkpjectbthatbit is interacting with. Whenever there is an interaction between two objects, there is a force exerted by each of the objects on one themselves.
Forces are generally divided into contact forces and non-contact over field forces.
In contact forces, the two objects physically in contact with each other. Examples of contact forces are push or pull forces, frictional forces, tensional forces, spring forces, etc.
Non-contact forces are forces in which the two objects interacting do no need to be physically in contact with one another. Examples include, gravitational forces, magnetic forces, electrical forces, etc.
Instruments used in measuring forces are known as force gauges.
From the instruments listed above:
A. A ruler is an instrument used in measuring length
B. Spring balance is a device used for measuring the weight or force of gravity acting on an object.
C. A thermometer is an instrument used in measuring temperature
D. A windbvane is an instrument used in measuring wind direction.
Answer:)
Top 5 Ways to Reuse and Recycle at Home
Repurpose Glass, Plastic and Cardboard Containers. ...
Designate a Kitchen Drawer for Plastic Bags. ...
Reuse your Home Delivered Newspaper. ...
Supply Artists with Creative Materials. ...
Convert Old Sheets, Towels and Clothing into Wash Rags.
Hope it helps you my dear friend:)
Plss mark me as brainliest:) thanks:)
Answer:
No
Explanation:
One mole of P₄ react with six moles of I₂ and gives 4 moles of PI₃.
When one gram phosphorus and 6 gram of iodine react they gives 8.234 g
ram of PI₃ .
Given data:
Mass of phosphorus = 1 g
Mass of iodine = 6 g
Mass of PI₃ = ?
Solution:
Chemical equation:
P₄ + 6I₂ → 4PI₃
Number of moles of P₄:
Number of moles = Mass /molar mass
Number of mole = 1 g / 123.9 g/mol
Number of moles = 0.01 mol
Number of moles of I₂:
Number of moles = Mass /molar mass
Number of moles = 6 g / 253.8 g/mol
Number of moles = 0.024 mol
Now we will compare the moles of PI₃ with I₂ and P₄.
I₂ : PI₃
6 : 4
0.024 :
4/6×0.024 = 0.02
P₄ : PI₃
1 : 4
0.01 : 4 × 0.01 = 0.04 mol
The number of moles of PI₃ produced by I₂ are less it will be limiting reactant.
Mass of PI₃ = moles × molar mass
Mass of PI₃ = 0.02 mol × 411.7 g/mol
Mass of PI₃ = 8.234 g
Answer:
Option C = electron
Explanation:
Electrons are responsible for the production of colored light.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
How electrons produce the colored light:
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Other process may involve,
Fluorescence:
In fluorescence the energy is absorbed by the electron having shorter wavelength and high energy usually of U.V region. The process of absorbing the light occur in a very short period of time i.e. 10 ∧-15 sec. During the fluorescence the spin of electron not changed.
The electron is then de-excited by emitting the light in visible and IR region. This process of de-excitation occur in a time period of 10∧-9 sec.
Phosphorescence:
In phosphorescence the electron also goes to the excitation to the higher level by absorbing the U.V radiations. In case of Phosphorescence the transition back to the lower energy level occur very slowly and the spin pf electron also change.
It is harder to remove an electron from fluorine than from carbon because the size of the nuclear charge in fluorine is larger than that of carbon.
The energy required to remove an electron from an atom is called ionization energy.
The ionization energy largely depends on the size of the nuclear charge. The larger the size of the nuclear charge, the higher the ionization energy because it will be more difficult to remove an electron from the atom owing to increased electrostatic attraction between the nucleus and orbital electrons.
Since fluorine has a higher size of the nuclear charge than carbon. More energy is required to remove an electron from fluorine than from carbon leading to the observation that; it is harder to remove an electron from fluorine than from carbon.
Learn more: brainly.com/question/16243729