Answer:
0.5 m/s2
Explanation:
accelration formula : final velocty - starting velocity divided by time
Answer:
r = √(k q₁ q₂ / F)
Explanation:
F = k q₁ q₂ / r²
Multiply both sides by r²:
F r² = k q₁ q₂
Divide both sides by F:
r² = k q₁ q₂ / F
Take the square root of both sides:
r = √(k q₁ q₂ / F)
Answer:
(a) p = 3.4 kg-m/s (b) 37.78 N.
Explanation:
Mass of a basketball, m = 0.4 kg
Initial velocity of the ball, u = -5.7 m/s (as it comes down so it is negative)
It rebounds upward at a speed of 2.8 m/s (as it rebounds so positive)
(a) Change in momentum = final momentum - initial momentum
p = m(v-u)
p = 0.4 (2.8-(-5.7))
p = 3.4 kg-m/s
(b) Impulse = change in momentum
Ft = 3.4
We have, t = 0.09 s

Hence, this is the required solution.
Answer:
Explanation:
If the force of 2000 N is directed towards the right and the friction is directed towards the left, the 2000 N force is positive and the other is negative. To find the resultant force:
2000 - 500 = 1500 N to the right