Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
Answer:
120,000J
Corrected question;
In one hour, coal supplies 500 000 J of energy. The wasted energy amounts to 380 000 J. How much useful energy is produced in one hour?
Explanation:
Given;
Total energy Et = 500,000 J
Wasted Energy Ew = 380,000J
The amount useful energy is the amount of energy that is available for supply.
This can be derived by subtracting the wasted energy from the total energy.
Useful energy = Total Energy - wasted energy
Eu = Et - Ew
Substituting the given values;
Eu = 500,000J - 380,000
Eu = 120,000 J
The amount of useful energy produced in one hour is 120,000 J
Answer:
C.) The slinky particles move up and down
Explanation:
<u>Transverse Wave</u>-
<em>A wave that has a disturbance perpendicular to the wave motion</em>
<em></em>
<em>Hello! This is the correct answer! Have a blessed day! :)</em>
<em>If you are in K12, please review the lesson! :) It will give you some very helpful definitions! I hope this helped!</em>
<u />
Answer:
it appears to be farther away than it actually is, and therefore smaller then the object itself.
Nuclear energy is released during: fission. radioactive decay. man-induced splitting of atoms. Match the basic components of a nuclear reactor with their descriptions. 1. slows down neutrons -> moderator. 2. absorb emitted neutrons -> control rods.