Impulse is equal to change in momentum of an object. The only way to change an object's momentum is to apply a force for certain amount of time.
Impulse is calculated as follows: Δp = F * t
Put your values in the right spots and solve for F. In this case since F is multiplied by Time, you will divide both sides by the time to find your answer.
A car is traveling due north at 23.6 m>s.
Find the velocity of the car after 7.10 s if its
acceleration is
The acceleration is known to be: a(t) = 1.7 m/s2.
We must integrate over time to obtain the velocity function, and the results are:
v(t) = (1.7m/s^2)
*t + v0
If we suppose that we begin at 23.6 m/s, then the initial velocity is: v0 = 23.6 m/s, where v0 is the beginning velocity.
The velocity formula is then: v(t) = (1.7m/s2).
*t + 23.6 m/s
We now seek to determine the value of t such that v(t) = 27.8 m/s.
Consequently, v(t) = 27.8 m/s = (1.7 m/s2)
*t + 23.6 m/s = (1.7 m/s2) 27.8 m/s - 23.6 m/s
t = 2.5 seconds when *t 4.2 m/s = (1.7 m/s/2)
At such acceleration, 2.5 seconds are required.
To learn more about acceleration Visit :
brainly.com/question/19599982
#SPJ9
Answer:
the amount of energy needed is 1.8 x 10¹⁷ J.
Explanation:
Given;
mass of the object, m₀ = 1 kg
velocity of the object, v = 0.866 c
By physics convection, c is the speed of light = 3 x 10⁸ m/s
The energy needed is calculated as follows;
E = Mc²
As the object approaches the speed of light, the change in the mass of the object is given by Einstein's relativity formula;

The energy required is calculated as;
E = 2 x (3 x 10⁸)²
E = 1.8 x 10¹⁷ J
Therefore, the amount of energy needed is 1.8 x 10¹⁷ J.
Answer:
Polar bears (Ursus maritimus) are of special interest because of their large size, white color and position as the top-level carnivore in the remote arctic environment. They occur only in the northern hemisphere nearly always in association with sea ice. They have only two colors of fur: tan and white. Polar bears were created to withstand cold temperatures and are quite adaptable. Polar bears are ferocious and the most dangerous of bears. They can lop a person's head off with one swoop of their paw.
Answers:
a)The balloon is 68 m away of the radar station
b) The direction of the balloon is towards the radar station
Explanation:
We can solve this problem with the Doppler shift equation:
(1)
Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the velocity of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which is the balloon
Isolating
:
(2)
(3)
(4) This is the velocity of the balloon, note the negative sign indicates the direction of motion of the balloon: It is moving towards the radar station.
Now that we have the velocity of the balloon (hence its speed, the positive value) and the time (
) given as data, we can find the distance:
(5)
(6)
Finally:
(8) This is the distance of the balloon from the radar station