21) Acceleration from D to E: 
22) The acceleration of the bus from D to E is 
Explanation:
21)
The acceleration of an object is equal to the rate of change of velocity of the object. Mathematically:

where
u is the initial velocity
v is the final velocity
t is the time elapsed
In this problem, we want to measure the acceleration of the bus from point D to point E. We have:
- Initial velocity at point D: u = 0
- Final velocity at point E: v = 5 m/s
- Time elapsed from D to E: t = 21 - 16 = 5 s
Therefore, the acceleration between D and E is

22) This question is the same as 21), so the result is the same.
Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Answer:
Explanation:
I got the same thing. So, i don't know but good luck
Answer:
In the Solar system, the Jovian planets are farther from the Sun. Majority of the extrasolar Jovian planets are closer to their stars. These are known as "Hot Jupiters". From the studies, the reason for the existence of massive Jovian planets to be closer to their star is found to be the gravitational interaction of these planets with other massive planets which pushes them closer to their stars. These planets are formed beyond the frost line initially but later on migrate inwards.