1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
14

What does the universe look like on very large scales?

Physics
1 answer:
Anestetic [448]2 years ago
3 0

Answer:

it looks like dots and just black space on a large scale

Explanation:

on a large scale the universe especially our milky way looks small

hope this helps  

You might be interested in
A 0.500-kg block, starting at rest, slides down a 30.0° incline with static and kinetic friction coefficients of 0.350 and 0.250
Leviafan [203]

Answer:x=23.4 cm

Explanation:

Given

mass of block m=0.5 kg

inclination \theta =30

coefficient of static friction \mu =0.35

coefficient of kinetic friction \mu _k=0.25

distance traveled d=77.3 cm

spring constant k=35 N/m

work done by gravity+work done by friction=Energy stored in Spring

mg\sin \theta d-\mu _kmg\cos \theta d=\frac{kx^2}{2}

mgd\left ( \sin \theta -\mu _k\cos \theta \right )=\frac{kx^2}{2}

0.5\times 9.8\times 0.773\left ( \sin 30-0.25\cos 30\right )=\frac{35\times x^2}{2}

x=\sqrt{\frac{2\times 0.5\times 9.8\times 0.773(\sin 30-0.25\times \cos 30)}{35}}

x=0.234 m

x=23.4 cm

6 0
3 years ago
If it takes 15 minutes to dry your hair with a 1.200 kW hair drier, how much energy is used in drying your hair?
Elodia [21]
1.2 kW * 0.25 h = 0.300 kWh
6 0
3 years ago
Read 2 more answers
Where would a new neuron come from
erica [24]
Neurogenesis does not occur everywhere in the brain but is evident in the hippocampus and olfactory bulb and perhaps in the cerebral cortex. New neurons are born not from mature nerve cells but rather develop from neural stem cells that remain in our brains throughout life.
7 0
3 years ago
Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 kg), each having (a) a speed o
Ad libitum [116K]

Answer:

Part A:

The proton has a smaller wavelength than the electron.  

\lambda_{proton} = 6.05x10^{-14}m < \lambda_{electron} = 1.10x10^{-10}m

Part B:

The proton has a smaller wavelength than the electron.

\lambda_{proton} = 1.29x10^{-13}m < \lambda_{electron} = 5.525x10^{-12}m

Explanation:

The wavelength of each particle can be determined by means of the De Broglie equation.

\lambda = \frac{h}{p} (1)

Where h is the Planck's constant and p is the momentum.

\lambda = \frac{h}{mv} (2)

Part A

Case for the electron:

\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

But J = Kg.m^{2}/s^{2}

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

\lambda = 1.10x10^{-10}m

Case for the proton:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}

\lambda = 6.05x10^{-14}m

Hence, the proton has a smaller wavelength than the electron.  

<em>Part B </em>

For part b, the wavelength of the electron and proton for that energy will be determined.

First, it is necessary to find the velocity associated to that kinetic energy:

KE = \frac{1}{2}mv^{2}

2KE = mv^{2}

v^{2} = \frac{2KE}{m}

v = \sqrt{\frac{2KE}{m}}  (3)

Case for the electron:

v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}

but 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}

v = 1.316x10^{8}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(1.316x10^{8}m/s)}    

\lambda = 5.525x10^{-12}m

Case for the proton :

v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}

But 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}

v = 3.07x10^{6}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}

\lambda = 1.29x10^{-13}m    

Hence, the proton has a smaller wavelength than the electron.

7 0
3 years ago
What are the units of measure for distance?
olga2289 [7]
The most common unit is meters (m for short). It is the base unit for distance or displacement in the metric system. If you are dealing with larger distances, you might use kilometers (I'm for short) which is just 1000 meters. On the other hand, centimeter (cm) are used for small distances and are 1/100 of a meter. Another common unit is millimeters (mm) which is 1/1000 of a meter.
6 0
4 years ago
Other questions:
  • Hi
    10·2 answers
  • Which statement best describes the superposition principle?
    9·1 answer
  • As the clump of colored fluid at the bottom of the lava lamp reaches the top, which has increased?
    9·2 answers
  • What is the significance of a standard system of measurement?
    15·2 answers
  • Match the particles with their characteristics,
    9·2 answers
  • Air pollution is a negative effect of using this renewable resource to generate power.
    7·2 answers
  • Suppose the electric field in problems 2 was caused by a point charge. The test charge is moved to a distance twice as far from
    14·1 answer
  • The heart working with the blood vessels to pump blood is which body system?
    9·1 answer
  • Systems, which are the building blocks of technology, are embedded within larger:
    5·1 answer
  • Student 1 lifts a box with a force of 500 N and sets it on a tabletop 1. 2 m high. Student 2 pushes an identical box up a 5 m ra
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!