The original width was 94.71 cm
<span>The area decreased 33.1% </span>
<span>The equation for the final size is </span>
<span>2X^2 = 1.2 m^2 </span>
<span>X^2 - 0.6 m^2 </span>
<span>X^2 = 10000 * .6 cm </span>
<span>X = 77.46 cm (this is the width) </span>
<span>The length is 2 * 77.46 = 154.92 cm </span>
<span>The original length was 154.92 + 34.5 = 189.42 cm </span>
<span>The original width was 189.42 / 2 = 94.71 cm </span>
<span>The original area was 94.71 * 189.92 = 17939.9 cm^2 </span>
<span>The new area is 79.46 * 154.92 = 12000.1 cm^2 </span>
<span>The difference between the original and current area is 17939.9 - 12000.1 = 5939.86 cm^2 </span>
<span>The percentage the area decreased is 5939.86 ' 17939.9 = 33.1%</span>
The answer will be C, a stopwatch :)
Answer:
a) D_ total = 18.54 m, b) v = 6.55 m / s
Explanation:
In this exercise we must find the displacement of the player.
a) Let's start with the initial displacement, d = 8 m at a 45º angle, use trigonometry to find the components
sin 45 = y₁ / d
cos 45 = x₁ / d
y₁ = d sin 45
x₁ = d sin 45
y₁ = 8 sin 45 = 5,657 m
x₁ = 8 cos 45 = 5,657 m
The second offset is d₂ = 12m at 90 of the 50 yard
y₂ = 12 m
x₂ = 0
total displacement
y_total = y₁ + y₂
y_total = 5,657 + 12
y_total = 17,657 m
x_total = x₁ + x₂
x_total = 5,657 + 0
x_total = 5,657 m
D_total = 17.657 i^+ 5.657 j^ m
D_total = Ra (17.657 2 + 5.657 2)
D_ total = 18.54 m
b) the average speed is requested, which is the offset carried out in the time used
v = Δx /Δt
the distance traveled using the pythagorean theorem is
r = √ (d1² + d2²)
r = √ (8² + 12²)
r = 14.42 m
The time used for this shredding is
t = t1 + t2
t = 1 + 1.2
t = 2.2 s
let's calculate the average speed
v = 14.42 / 2.2
v = 6.55 m / s
Answer:
Explanation:
As the source is situated on x - axis , it must be situated in between the two listeners .
So the x coordinate of source is
(-7 + 3 )/2
= - 2 m
The equation of the wave- front will be that o a circle having centre at (-2,0)
and radius = distance between -2 and 3 , that is 5 m
equation of circle
=( x+2 )² + y² = 25
It cuts y axis when x = 0
Putting x = 0
4 + y² = 25
y² = 21
y = + √21 , or - √21