B. the distance the star is from Earth
Explanation:
The apparent magnitude of star is a function of its distance from the earth. It is one of the physical properties that is used to study a star.
The apparent magnitude of a star or other astronomical bodies is a measure of their brightness as seen from a location on the earth.
The apparent magnitude of a star depends on:
- Distance of the star from the location on earth.
- luminosity of the star
- the particles along the part of the star and earth that cuts off the light the earth receives.
learn more:
Star luminosity brainly.com/question/9084808
#learnwithBrainly
All of the electromagnetic energy radiated from the sun (and from
other stars) is the product of nuclear fusion in its core.
Answer:
The proton has much greater mass
Explanation:
- Protons and electrons are part of an atom
- Proton exists inside nucleus whereas electron keep moving around the nucleus
- Electrons have negative charge where as protons have positive charge .
Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Answer:
No, not necessarily
Explanation:
If an object is moving with an acceleration that causes its speed to be reduced, there will be a moment in which it reaches v = 0, but this doesn't necessarily mean that the acceleration isn't acting anymore. If the object continues its movement with the same acceleration, it's velocity will become negative.
An example of an object that has zero velocity but non-zero acceleration:
If you throw an object in the air with a certain velocity, it will move vertically, reducing its velocity in a 9,8
rate (which is the acceleration caused by gravity). At a certain point, the object will reach its maximum height, and will start to fall. In the exact moment that it reaches the maximum height, before it starts falling, its velocity is zero, but gravity is still acting on the object (this is the reason why it starts falling instead of just being stopped at that point). Therefore, at that point, the object has zero velocity but an acceleration of 9,8
.