1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
11

Which of the following diagrams involves a virtual image?

Physics
1 answer:
monitta3 years ago
7 0

I think the answer is c because the image is shown on the same side as the object

You might be interested in
A gray kangaroo can bound across level ground with each jump carrying it 8.7 from the takeoff point. Typically the kangaroo leav
oksano4ka [1.4K]

Answer:

a) The takeoff speed is 10 m/s.

b) The maximum height above the ground is 1.2 m.

Explanation:

The position of the kangaroo and its velocity at any given time "t" can be calculated by the following equations:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v =(v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t".

x0 = initial horizontal position.

v0 = initial velocity.

α = jumping angle.

y0 = initial vertical position.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity vector at time "t"

a) Please see the attached figure for a better understanding of the problem. In red is depicted the position vector at the final time (r final). The components of r final are known:

r final = (8.7 m, 0 m)

Then at final time:

8.7 m = x0 + v0 · t · cos α

0 m = y0 + v0 · t · sin α + 1/2 · g · t²

(notice in the figure that the origin of the frame of reference is located at the jumping point so that x0 and y0 = 0). Then:

8.7 m = v0 · t · cos α

Solving for "v0":

8.7 m /(t · cos α) = v0

Replacing v0 in the equation of the y-component, we can obtain the final time:

0 m = 8.7 m · tan 29° - 1/2 · 9.8 m/s² · t² (remember: sin α / cos α = tan α)

- 8.7 m · tan 29° / -4.9 m/s² = t²

t = 0.99 s

Now, we can calculate the initial speed:

8.7 m /t · cos α = v0

v0 = 8.7 m / (0.99 s · cos 29°)

<u>v0 = 10 m/s</u>

The takeoff speed is 10 m/s

b) When the kangaroo is at its maximum height, the velocity vector is horizontal (see figure). That means that the y-component of the velocity at that time is 0:

0 = v0 · sin α + g · t

Solving for "t":

-v0 · sin α / g = t

t = - 10 m/s · sin 29° / 9.8 m/s²

t = 0.49 s

Notice that we could have halved the final time (0.99 s, calculated above) to obtain the time at which the kangaroo is at its maximum height. That´s because the trajectory is parabolic.

Now, let´s find the height of the kangaroo at that time:

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 10 m/s · 0.49 s · sin 29° - 1/2 · 9.8 m/s² · (0.49 s)²

<u>y = 1.2 m</u>

The maximum height above the ground is 1.2 m.

4 0
3 years ago
An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.275 T. If the kinetic energy of the electr
xxMikexx [17]

Answer:

Radius, r=2.14\times 10^{-5}\ m

Explanation:

It is given that,

Magnetic field, B = 0.275 T

Kinetic energy of the electron, E=4.9\times 10^{-19}\ J

Kinetic energy is given by :

E=\dfrac{1}{2}mv^2

v=\sqrt{\dfrac{2E}{m}}

v=\sqrt{\dfrac{2\times 4.9\times 10^{-19}}{9.1\times 10^{-31}}}            

v = 1037749.04 m/s

The centripetal force is balanced by the magnetic force as :

qvB\ sin90=\dfrac{mv^2}{r}

r=\dfrac{mv}{qB}

r=\dfrac{9.1\times 10^{-31}\times 1037749.04}{1.6\times 10^{-19}\times 0.275 }

r=2.14\times 10^{-5}\ m

So, the radius of the circular path is 2.14\times 10^{-5}\ m. Hence, this is the required solution.

3 0
3 years ago
Read 2 more answers
If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
andrew-mc [135]
<h2>Answer:</h2>

<em>Hello, </em>

<h3><u>QUESTION)</u></h3>

Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².  

<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>

  • Δt = (√2xgxh)/9,8
  • Δt = (14√10)/9,8
  • Δt ≈ 4,5 s

4 0
3 years ago
What r three positive results of a variation within a population that occur due to natural selection
Phoenix [80]

Answer:

Traits, evolution, adaptive

4 0
3 years ago
What happens when two waves meet
olganol [36]

Wave interference is the phenomenon that occurs when two waves meet while traveling along the same medium. The interference of waves causes the medium to take on a shape that results from the net effect of the two individualwaves upon the particles of the medium.Hope this help!

4 0
3 years ago
Other questions:
  • A 20 kg bicycle carrying a 50 kg
    8·1 answer
  • When a light shines through an object it is called
    15·1 answer
  • In a certain kinetics experiment, the enzymatically catalyzed hydrolysis of ATP proceeds at a constant rate of 2.0 µM•s–1. If th
    9·1 answer
  • A model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration
    8·1 answer
  • A block with mass m =7.4 kg is hung from a vertical spring. when the mass hangs in equilibrium, the spring stretches x = 0.22 m.
    8·1 answer
  • PHYSICS
    15·1 answer
  • Part B: Quantitative
    10·1 answer
  • a bus is moving with the velociity of 36 km/hr . after seeing a boy at 20 m ahead on the road, the driver applies the brake and
    11·1 answer
  • An airplane flies with a constant speed of 560 miles per hour. How long will it take to travel a distance of 840 miles?​
    8·1 answer
  • Can you answer this math homework? Please!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!