Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
I know that light is the fastest.
Answer:
Explanation:
The main task here is that there are some missing gaps in the above question that needs to be filled with the appropriate answers. So, we are just going to do rewrite the answer below as we indicate the missing gaps by underlining them and making them in bold format.
SO; In the quantum-mechanical model of the hydrogen atom.
As the n level increases. the energy <u>increases</u> and thus levels are <u>closer to </u>each other. Therefore, the transition <u>3p→2s</u> would have a greater energy difference than the transition from <u>4p→3p.</u>


Answer: are electrically attracted to each other
Explanation:Water molecules are attracted to each other by partial negative and positive charges on the oxygen and hydrogen atoms, respectively