Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
a. 1.75 Nm²/C
b. Yes.
Explanation:
a. Electric Flux is given as:
Φ = E*A*cosθ
Where E = electric flux
A = Surface area
Φ = 14 * 0.25 * cos60
Φ = 1.75 Nm²/C
b. Yes, the shape of the sheet will affect the Flux through it. This is because flux is dependent on area of the surface and the area is dependent on the shape of the surface.
Answer:
Like charges repel
Different charges attract
Explanation:
When particles of similar charges are brought together, they repel each other and increase the distance of separation. Repulsion occurs because both two electrons have negative electrical charge forcing their lines of force to repel. However, when particles of opposite charges are brought nearer to each other, they attract each other and reduce the distance of separation.
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:

where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.