Correct answer choice is:
D. A continuous transmission of energy from one location to the next.
Explanation:
Waves include the carrier of energy without the carrier of matter. In outcome, a wave can be characterized as a change that progresses into a medium, carrying energy from one spot (its source) to different spot without carrying matter.
The magnetic dipole moment of the current loop is 0.025 Am².
The magnetic torque on the loop is 2.5 x 10⁻⁴ Nm.
<h3>What is magnetic dipole moment?</h3>
The magnetic dipole moment of an object, is the measure of the object's tendency to align with a magnetic field.
Mathematically, magnetic dipole moment is given as;
μ = NIA
where;
- N is number of turns of the loop
- A is the area of the loop
- I is the current flowing in the loop
μ = (1) x (25 A) x (0.001 m²)
μ = 0.025 Am²
The magnetic torque on the loop is calculated as follows;
τ = μB
where;
- B is magnetic field strength
B = √(0.002² + 0.006² + 0.008²)
B = 0.01 T
τ = μB
τ = 0.025 Am² x 0.01 T
τ = 2.5 x 10⁻⁴ Nm
Thus, the magnetic dipole moment of the current loop is determined from the current and area of the loop while the magnetic torque on the loop is determined from the magnetic dipole moment.
Learn more about magnetic dipole moment here: brainly.com/question/13068184
#SPJ1
Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
Answer:
(a) 
(b) 
(c) 
Explanation:
First change the units of the velocity, using these equivalents
and 

The angular acceleration
the time rate of change of the angular speed
according to:


Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.

b) To find the distance traveled in radians use the formula:


To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).


c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:

The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):

