Half life is the time taken by a radioactive isotope to decay by half its original mass. In this case, the halflife of the radioactive isotope is 5000 years.
Initially the mass is 100 %; thus the mass that will be left will be given by;
New mass = Original mass × (1/2)^n where n is the number of half lives;
n = 10000/5000 = 2
New mass = 100% ×(1/2)^2
= 100 % × 1/4
= 25%
Therefore; the mass left after 10000 years is 25% or 1/4 of the original mass.
Answer:
vp jokhimon vf dpp gl fl vk hggjuvg7vvohohohohojj
Answer:
Percent yield: 78.2%
Explanation:
Based on the reaction:
4Al + 3O₂ → 2Al₂O₃
<em>4 moles of Al produce 2 moles of Al₂O₃</em>
<em />
To find percent yield we need to find theoretical yield (Assuming a yield of 100%) and using:
(Actual yield (6.8g) / Theoretical yield) × 100
Moles of 4.6g of Al (Molar mass: 26.98g/mol) are:
4.6g Al × (1mol / 26.98g) = 0.1705 moles of Al.
As 4 moles of Al produce 2 moles of Al₂O₃, theoretical moles of Al₂O₃ obtained from 0.1705 moles of Al are:
0.17505 moles Al × (2 moles Al₂O₃ / 4 moles Al) = <em>0.0852 moles of Al₂O₃</em>,
In grams (Molar mass Al₂O₃ = 101.96g/mol):
0.0852 moles of Al₂O₃ × (101.96g / mol) =
<h3>8.7g of Al₂O₃ can be produced (Theoretical yield)</h3>
Thus, Percent yield is:
(6.8g / 8.7g) × 100 =
<h3>
78.2% </h3>
Answer:
The best example of an object and motion that would make it hard for people to accept Newtons first law is, "A rolling ball eventully slows down and comes to a stop".
Explanation:
Lewis Structure is drawn in following steps,
1) Calculate Number of Valence Electrons: # of Valence electrons in Mg = 2
# of Valence electrons in I = 7
# of Valence electrons in I = 7
---------
Total Valence electrons = 16
2) Draw Mg as a central atom surround it by two atoms of Iodine.3) Connect each Iodine atom to Mg, and subtract two electrons per bond. In this case we will subtract 4 electrons from total valence electrons. i.e.
Total Valence electrons 16
- Four electrons - 4
----------
12
4) Now start adding the remaining 12 electrons on more electronegative atoms i.e. Iodine.
The final lewis structure formed is as follow,