Your drawing looks so good :p
Answer: 14943.5 J
Explanation:
The quantity of heat energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that,
Q = ?
Mass of water = 55.0g
C = 4.18 J/g°C
Φ = 65.0°C
Then, Q = MCΦ
Q = 55.0g x 4.18 J/g°C x 65.0°C
Q = 14943.5 J
Thus, 14943.5 joules of heat is needed to raise the temperature of water.
CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.
Answer
Using the law of reflection—the angle of reflection equals the angle of incidence—we can see that the image and object are the same distance from the mirror. This is a virtual image, since it cannot be projected—the rays only appear to originate from a common point behind the mirror.
Explanation:
Hope this helps someone
Answer:
The last option
Explanation:
The Bohr model was an attempt to explain atomic hydrogen's spectrum. This was done by establishing energy levels of separate electron orbits in the atom.Thos model was followed by the Schrödinger model.