Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs
The Keq for the reaction N₂ + 3H2 = 2NH3 if the equilibrium concentrations are Keq = 1.5. The correct option is D.
<h3>What is Keq?</h3>
Keq is the ratio of the concentration of reactant to the concentration of the product.
The balanced equation is
N₂ + 3H₂ = 2NH₃
The equilibrium constant is ![\rm \dfrac{[NH_3]^2}{[N_2]\; [H_2]^3}](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5C%3B%20%5BH_2%5D%5E3%7D)
The given concentrations of the compounds have been:
Ammonia = 3 M
Nitrogen = 1 M
Hydrogen = 2 M

Thus, the correct option is D. Keq = 1.5.
Learn more about Keq
brainly.com/question/24059926
#SPJ1
The answer is hard to give without any information.
Answer:
17 protons, 20 neutrons, and 17 electrons.
Explanation:
A periodic table can be defined as the standard arrangement of chemical elements by atomic number, electronic configuration and chemical properties in a tabular form.
Generally, a proper representation of the mass number and atomic number of chemical elements is key and very important in chemistry.
Furthermore, as a rule, it should be noted that the mass number (nucleon number) is always larger than the atomic number(number of proton).
The mass number of this neutral atom of Cl-37 is 37 and we know that the atomic number (number of protons) of chlorine is 17. Also, the atomic number of an element is equal to the number of its electrons.
A neutral atom of Cl-37 has 17 protons, 20 neutrons, and 17 electrons.
Hence, a neutral atom of Cl-37 can be identified based on its number of protons because it represent its atomic number, which is what is used to differentiate an atom of an element from the atom of another chemical element.