Answer:
B)−6,942 J
/mol
Explanation:
At constant temperature and pressure, you cand define the change in Gibbs free energy, ΔG, as:
ΔG = ΔH - TΔS
Where ΔH is enthalpy, T absolute temperature and ΔS change in entropy.
Replacing (25°C = 273 + 25 = 298K; 25.45kJ/mol = 25450J/mol):
ΔG = ΔH - TΔS
ΔG = 25450J/mol - 298K×108.7J/molK
ΔG = -6942.6J/mol
Right solution is:
<h3>B)−6,942 J
/mol</h3>
For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
Answer:
The final temperature of the system is 27.3°C.
Explanation:
Heat lost by aluminum = 3.99 × 0.91 × (100-T)
= 3.631 (100-T)
Heat gained by water = 10 × 4.184 × (T-21)
= 41.84 (T-21)
As,
Heat gained = Heat loss
or, 3.631(100-T) = 41.84(T-21)
or,363.1 - 3.631 T = 41.84 T - 878.64)
or, (41.84+ 3.631) T = 878.64 +363.1
or T=
or, T = 27.3°C
Hence the final temperature is 27.3°C.
Answer:Molarity
Explanation:M stand for molarity
We are given with
136 g P4
excess oxygen
The complete combustion reaction is
P4 + 5O2 => 2P2O5
Converting the amount of P4 to moles
136/123.9 = 1.098 moles
Using stoichiometry
moles P2O5 = 1.098 x 2 = 2.195 moles P2O5