Answer:
383.90K
Explanation:
P1 = 851mmHg
T1 = 330K
T2 = ?
P2 = 990mmHg
To solve for P2, we have to use pressure law which states that the pressure of a fixed mass of fixed is directly proportional to its temperature provided that volume remains constant
Mathematically,
P = kT, k = P/T
P1 / T1 = P2 / T2 = P3 / T3 =.......=Pn / Tn
P1 / T1 = P2 / T2
T2 = (P2 × T1) / P1
T2 = (990 × 330) / 851
T2 = 383.90K
The final temperature of the gas is 383.90K
Answer:
the mass of one mole of an element, or Avogadro's number (6.02 x 1023) of atoms, is equal to its atomic mass in grams. In other words, 1 amu = 1 gram/mole. So if the mass of one hydrogen atom is 1 amu, the mass of one mole of hydrogen is 1 gram.
Explanation:
Answer:
<em>Different rocks have high, medium, and low melting points.</em>
Explanation:
There is a considerable range of melting temperatures for different compositions of magma. All the silicates are molten at about 1200°C (when a part of rock) and all are solid when cooled to about 600°C. Often the silicates are grouped as high, medium and low-melting point solids.
<u>Answer:</u> The number of phosphorus atoms in given amount of copper(II) phosphate is 
<u>Explanation:</u>
We are given:
Moles of copper(II) phosphate
= 7.00 mol
1 mole of copper(II) phosphate contains 3 moles of copper, 2 moles of phosphorus and 8 moles of oxygen atoms
Moles of phosphorus in copper(II) phosphate = 
According to the mole concept:
1 mole of a compound contains
number of particles
So, 7.00 moles of copper(II) phosphate will contain =
number of phosphorus atoms.
Hence, the number of phosphorus atoms in given amount of copper(II) phosphate is 
<span>the speed of radio wave radiation is lower than infrared radiation</span>