First we need to find the number of moles of hydrogen gas formed
Zn + 2HCl ---> ZnCl₂ + H₂
stoichiometry of Zn to H₂ is 1:1
the number of Zn moles reacted - 2.4 g / 65.4 g/mol = 0.0367 mol
assuming Zn to be the limiting reactant
number of Zn moles reacted = number of H₂ moles formed
therefore number of H₂ moles formed = 0.0367 mol
we can use ideal gas law equation to find the pressure
PV = nRT
P - pressure
V - Volume - 450 x 10⁻⁶ m³
n - number of moles - 0.0367 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 32 °C + 273 = 305 K
substituting these values in the equation
P x 450 x 10⁻⁶ m³ = 0.0367 mol x 8.314 Jmol⁻¹K⁻¹ x 305 K
P = 206.8 kPa
pressure is 206.8 kPa
<h3>
Answer:</h3>
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
<h3>
Explanation:</h3>
- Assuming the reaction is the reduction of CuO by H₂
- Then the balanced equation for the reaction is;
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
- The equation shows the reducing property of hydrogen gas, such that hydrogen reduces metal oxides such as copper(ii)oxide to the respective metals.
- The law of conservation requires chemical equations to be balanced so as the mass of reactants will be equal to that of products.
- In this case; there is 1 copper atom, 1 oxygen atom and 2 hydrogen atoms on both side of the equation and thus the equation is balanced.
Water's extensive capability to dissolve a variety of molecules has earned it the designation of “universal solvent,” and it is this ability that makes water such an invaluable life-sustaining force. On a biological level, water's role as a solvent helps cells transport and use substances like oxygen or nutrients.
Molarity is a term that applies to the amount of Moles of solute, per each litre of the solution.
Answer:
The correct answer is d.hydrogen peroxide H₂O₂H₂O₂
Explanation:
Substances can be found in nature in different <em>aggregation states. </em>
Agreggation states can be liquid, gas or solid.
The problem asks about which substance can be found in room temperature as <em>liquid.</em> Each subtances has different physical and chemical properties that determines in which state you can find them at room temperature.
Hydrogen peroxide is the only substance listed that is in liquid state at room temperature, all other substances are in gas state at room temperature.