Balanced chemical equation for the reaction is:
2S
(g) +
(g)+ 2
O (l) ⇒
Moles of
formed is 5.75 moles.
Moles of oxygen used is 5.75 moles in the reaction.
Explanation:
Data given:
moles of S
= 11.5 moles
moles of
= ?
Moles of
needed =?
balanced equation with states of matter =?
Balanced chemical reaction under STP condition is given as:
2S
(g) +
(g) + 2
O (l) ⇒
From the balanced reaction 2 moles of sulphur dioxide reacted to form 1 mole of sulphuric acid:
so, from 11.5 moles of S
, x moles of
is formed

2x = 11.5
x = 5.75 moles of sulphuric acid formed.
From the balanced reaction 1 mole of oxygen reacted to form 1 mole of sulphuric acid.
when 11.5 moles of Sulphur dioxide reacted then oxygen in the reaction is 5.75 moles.
Answer:
C
Explanation:
Cyclohexane is a cycloalkane with the molecular formula C₆H₁₂. Cyclohexane is non-polar.
Answer:
See explanation.
Explanation:
For the ideal gas law (PV = nRT), we can notice that when the temperatures increases, the pressure or the volume must increase.
For the container with constant volume, the pressure will increase. Because density is mass/volume, in this container the density will not change.
For the other container, the pressure must be the same as the external, so it will not change, then the volume must increase. When the volume increases, the density decreases (density = mass/volume), so the pressure doesn't change and the density decreases.
Answer:
32.7
Explanation:
I just did it and got it right
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!