Answer:
2,3,6,7 from the top
Step-by-step explanation:
Detailed Answers:
Volume of a Sphere (V) = 4/3 πr^3
1. Diameter (d) = 21.6 cm
Radius (r) = 21.6/2 = 10.8 cm
Therefore,
= 4/3 πr^3
= 4/3 * 22/7 * (10.8)^3
= 4/3 * 22/7 * 1259.712
= 88/21 * 1259.712
=> 5278.79
Volume (V) = 5278.79 cm^3
2. Diameter (d) = 16 cm
Radius (r) = 16/2 = 8 cm
Therefore,
= 4/3 πr^3
= 4/3 * 22/7 * (8)^3
= 4/3 * 22/7 * 512
= 88/21 * 512
=> 2145.52
Volume (V) = 2145.52 cm^3
3. Diameter (d) = 24 cm
Radius (r) = 24/2 = 12 cm
Therefore,
= 4/3 πr^3
= 4/3 * 22/7 * (12)^3
= 4/3 * 22/7 * 1728
= 88/21 * 1728
=> 7241.14
Volume (V) = 7241.14 cm^3
4. Diameter (d) = 6 cm
Radius (r) = 6/2 = 3 cm
Therefore,
= 4/3 πr^3
= 4/3 * 22/7 * (3)^3
= 4/3 * 22/7 * 27
= 88/21 * 27
=> 113.14
Volume (V) = 113.14 cm^3
Answer:
1234567
Step-by-step explanation:
One
Two
Three
Four
Five
Six
Seven
One possible number sequence is 1, 2, 3, 4, 5, 6, 7.
Putting this as an arithmetic sequence gives:

The sum of the series = 16 x 7 x 7 = 784 m^3 = 784 000 L
The sum of an arithmetic series can be written as:
![S_n=n/2 [2a+(n-1)d] = 784 000 \\n/2[2(150)+(n-1)200] = 784 000 \\n[300+200(n-1)=1 568 000 \\300n+200n^2-200n = 1 568 000 \\200n^2+100n- 1 568 000 = 0 \\2n^2 +n- 15680 = 0 \\n= 88.2...,-88.7](https://tex.z-dn.net/?f=S_n%3Dn%2F2%20%5B2a%2B%28n-1%29d%5D%20%3D%20784%20000%0A%5C%5Cn%2F2%5B2%28150%29%2B%28n-1%29200%5D%20%3D%20784%20000%0A%5C%5Cn%5B300%2B200%28n-1%29%3D1%20568%20000%0A%5C%5C300n%2B200n%5E2-200n%20%3D%201%20568%20000%0A%5C%5C200n%5E2%2B100n-%201%20568%20000%20%3D%200%0A%5C%5C2n%5E2%20%2Bn-%2015680%20%3D%200%0A%0A%5C%5Cn%3D%2088.2...%2C-88.7)
n has to be positive, so we get
n =
<u>88.2 hours (3 s.f.)</u>
Answer:
3,781
Step-by-step explanation:
To solve this problem, we will find the area of the whole circle and use that to find teh area of the 60º section.
First, recognize the formula for the area of a circle:
A = 3.14
In this scenario, the radius (<em>r</em>) is 85 feet:
A = 3.14(85
A circle is 360º and we only require the area of 60º. 360º / 60º = 6 so we will divide by 6:
A = 
Finally, we will simplify and round:
A = 3,781